• Title/Summary/Keyword: 단층계

Search Result 232, Processing Time 0.029 seconds

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area (단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예)

  • Park, Chae-Eun;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.615-627
    • /
    • 2021
  • The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

Research on Earthquake Occurrence Characteristics Through the Comparison of the Yangsan-ulsan Fault System and the Futagawa-Hinagu Fault System (양산-울산 단층계와 후타가와-히나구 단층계의 비교를 통한 지진발생특성 연구)

  • Lee, Jinhyun;Gwon, Sehyeon;Kim, Young-Seog
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.195-209
    • /
    • 2016
  • The understanding of geometric complexity of strike-slip Fault system can be an important factor to control fault reactivation and surface rupture propagation under the regional stress regime. The Kumamoto earthquake was caused by dextral reactivation of the Futagawa-Hinagu Fault system under the E-W maximum horizontal principal stress. The earthquakes are a set of earthquakes, including a foreshock earthquake with a magnitude 6.2 at the northern tip of the Hinagu Fault on April 14, 2016 and a magnitude 7.0 mainshock which generated at the intersection of the two faults on April 16, 2016. The hypocenters of the main shock and aftershocks have moved toward NE direction along the Futagawa Fault and terminated at Mt. Aso area. The intersection of the two faults has a similar configuration of ${\lambda}$-fault. The geometries and kinematics, of these faults were comparable to the Yansan-Ulsan Fault system in SE Korea. But slip rate is little different. The results of age dating show that the Quaternary faults distributed along the northern segment of the Yangsan Fault and the Ulsan Fault are younger than those along the southern segment of the Yansan Fault. This result is well consistent with the previous study with Column stress model. Thus, the seismic activity along the middle and northern segment of the Yangsan Fault and the Ulsan Fault might be relatively active compared with that of the southern segment of the Yangsan Fault. Therefore, more detailed seismic hazard and paleoseismic studies should be carried out in this area.

Interpretation of Paleostress using Geological Structures observed in the Eastern Part of the Ilgwang Fault (일광단층 동편에서 관찰되는 지질구조를 이용한 고응력사 해석)

  • Kim, Taehyung;Jeong, Su-Ho;Lee, Jinhyun;Naik, Sambit Prasanajit;Yang, Wondong;Ji, Do Hyung;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.645-660
    • /
    • 2018
  • In the southeastern part of the Korean Peninsula, huge fault valleys, including the Yangsan and Ulsan faults, are recognized. These NNE-SSW trending lineaments are called as a whole Yangsan Fault System. However, this fault system is relatively poorly studied except the Yangsan and Ulsan faults. This study deduced the paleostress history based on the mutual cross-cutting relationships between geologic structures developed in the granite body near the Ilgwang fault, which is compared with previous studies. In the study area, four lineaments parallel to the Ilgwang fault are recognized, and three of them show evidences of faulting. In each lineament, both slip-senses of left-lateral and right-lateral are recognized. It indicates that these faults consistently underwent multiple deformations of inversion along the faults. The inferred paleostress directions based on the mutual cross-cutting relationships of the geological structures are as follows: 1) Tensile fractures developed in the late Cretaceous under the ENE-WSW direction of compressive stress, 2) NW-SE trending maximum horizontal principal stress generated conjugate strike-slip faults, and 3) selective reactivations of some structures were derived under the compression by the NE-SW trending principal stress.

Endodontic treatment of a continuous C-shaped maxillary first molar with independent four canals identified by using cone-beam computed tomography

  • Ahn, Hye-ra
    • The Journal of the Korean dental association
    • /
    • v.54 no.2
    • /
    • pp.142-148
    • /
    • 2016
  • 본 연구의 목적은 특이한 C형 치근과 근관을 가지고 있는 상악 제 1대구치의 근관치료 증례를 콘빔단층촬영을 사용하여 진단 및 치료하였음을 보고하는 것이다. 본 증례에서는 특이적인 해부학적 근관 형태가 콘빔단층촬영을 사용하여 확인되었으며 비외과적 근관치료가 시행되었다. 촬영한 영상에서 모든 치근이 C 형태로 융합되어 있으며 독립적인 4개의 근관을 포함하고 있음이 관찰되었다. C형 근관계의 복잡성을 고려할 때 콘빔단층촬영이 적절한 근관계의 확인과 의원성 손상을 예방하기 위해 유용한 보조적 방법인 것으로 보여진다.

  • PDF

Estimation of Volume Change and Fluid-Rock Ratio of Gouges in Quaternary Faults, the Eastern Blocks of the Ulsan Fault, Korea (울산단층 동부지역 제4기단층 비지대의 체적변화와 유체-암석비에 대한 고찰)

  • Chang Tae-Woo;Chae Yeon-Zoon;Choo Chang-Oh
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.349-363
    • /
    • 2005
  • Many Quaternary faults are recognized as thin gouge and narrow cataclastic zone juxtaposing the Bulguksa granite and Quaternary deposit bed in the eastern block of the Using Fault, Korea: Gaegok 1, Caegok 2, Singye, Madong Wonwonsa and Jinhyeon faults. This study was performed to calculate chemical change, volume change, silica loss and fluid-rock ratio taken place in gouge zones of these Quaternary faults using XRF, XRD, EPMA. The chemical compositions of fault rocks reveal that the fault gouges are depleted in $SiO_2,\;Na_2\;O,and\;K_2O$ and enriched in $Al_2O_3,\;Fe_2O_3,\;P_2O_5,\;MgO,\;MnO,\;CaO,\;and\;LOI(H_2O+CO_2)$ relative to protoliths. The fact that there is enrichment of relatively immobile elements and depletion of the more soluble elements in the fault gouges relative to protoliths can be explained by fluid-assisted volume loss of $56\%$ for Caegok 1 fault, $22\%$ for Caegok 2 fault,$34\%$, for Singye fault, $8\%$ for Madong fault, $2\%$ for the Wonwonsa fault and $53\%$ for the linhyeon fault. Madong fault and Wonwonsa fault where ratios of the volume change, silica loss and fluid-rock are low might have acted as a closed system for fluid activity, whereas Caegok 1 fault and Jinhyeon fault with high ratios in those factors be an open system. The volumetric fluid-rock ratios range $10^2\sim10^4$ for all faults, being highest in Caegok 1 fault and Jinhyeon fault whose fluid activity was most significant.

Comparison between the Yangsan and Ulsan fault systems based on the lineament Features (선형구조 분석을 통한 양산 단층계와 울산 단층계의 비교)

  • 최원학;장천중;신정환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.30-37
    • /
    • 2003
  • Lineaments along the Yangsan and Ulsan fault systems were extracted through aerial photograph interpretation in the southeastern part of Korean Peninsula. Lineaments can be classified into five ranks on the basis of certainty and divided by curvatures. Mean strikes of all lineament by aerial photograph interpretation is dominant in NS ~N05$^{\circ}$E direction along the Ulsan fault system and Nl5-20$^{\circ}$E direction along the Yangsan fault system respectively. The curvature of lineament around Yangsan Fault is different from around the Ulsan Fault system, the former shows that straight lineament is dominant but the latter curved lineaments are dominant. It indicates that the Quaternary faults around Ulsan Fault would be appeared as reverse fault.

  • PDF

Site Monitoring System of Earthquake, Fault and Slope for Nuclear Power Plant Sites (원자력발전소의 부지감시시스템의 운영과 활용)

  • Park, Donghee;Cho, Sung-il;Lee, Yong Hee;Choi, Weon Hack;Lee, Dong Hun;Kim, Hak-sung
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.185-201
    • /
    • 2018
  • Nuclear power plants(NPP) are constructed and operated to ensure safety against natural disasters and man-made disasters in all processes including site selection, site survey, design, construction, and operation. This paper will introduce a series of efforts conducted in Korea Hydro and Nuclear Power Co. Ltd., to assure the safety of nuclear power plant against earthquakes and other natural hazards. In particular, the present status of the earthquake, fault, and slope safety monitoring system for nuclear power plants is introduced. A earthquake observatory network for the NPP sites has been built up for nuclear safety and providing adequate seismic design standards for NPP sites by monitoring seismicity in and around NPPs since 1999. The Eupcheon Fault Monitoring System, composed of a strainmeter, seismometer, creepmeter, Global Positioning System, and groundwater meter, was installed to assess the safety of the Wolsung Nuclear Power Plant against earthquakes by monitoring the short- and long-term behavioral characteristics of the Eupcheon fault. Through the analysis of measured data, it was verified that the Eupcheon fault is a relatively stable fault that is not affected by earthquakes occurring around the southeastern part of the Korean peninsula. In addition, it was confirmed that the fault monitoring system could be very useful for seismic safety analysis and earthquake prediction study on the fault. K-SLOPE System for systematic slope monitoring was successfully developed for monitoring of the slope at nuclear power plants. Several kinds of monitoring devices including an inclinometer, tiltmeter, tension-wire, and precipitation gauge were installed on the NPP slope. A macro deformation analysis using terrestrial LiDAR (Light Detection And Ranging) was performed for overall slope deformation evaluation.

A Study on the Interferometer Configuration for Improvement of Signal-to-Noise Ratio of Optical Coherence Tomography System (OCT 시스템의 SNR 향상을 위한 간섭계 개선에 관한 연구)

  • Yang, Sung-Kuk;Park, Yang-Ha;Chang, Won-Suk;Oh, Sang-Ki
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.5
    • /
    • pp.126-131
    • /
    • 2004
  • As a noninvasive imaging method, optical coherence tomography system has been extensively studied because it has some advantages such as imaging of high resolution, low cost, and compact size configuration. In order to improve the SNR of OCT system, two types of interferometers were configured and then, we compared simulation with measurement of reference sample. In the OCT system is configured with Michelson interferometer, the contrast of cross-sectional image is reduced with low SNR detection which is due to loss of feedback interference signal from light source part. Also, in order to image measured data with real time, image processing program is constructed. From results of simulation, it is confirmed that improved Michelson interferometer is improved about 10[dB] with a 50 : 50 fiber coupler. And from the measurement of reference sample, about 5[dB] is improved with a 50 : 50 fiber coupler. It is confirmed that the OCT system is configured with the improved Michelson interferometer which has a good distinctive cross-sectional image due to higher contrast.