• Title/Summary/Keyword: 단축 이방성

Search Result 26, Processing Time 0.029 seconds

Analysis of Weathering Sensitivity by Swelling of Domestic Highway Sites (국내 고속도로현장의 스웰링에 의한 풍화민감도 분석)

  • Jang, Seokmyung;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.3
    • /
    • pp.15-22
    • /
    • 2022
  • This study aims to observe the swelling representative rocks in Korea and to suggest improvements in the use of test methods and prior analysis in relation to the weathering of rocks. The swelling test and analysis were performed on the drilling cores obtained for the ground investigation at the domestic highway construction site. For the method of determining the absorption expansion index of rocks, the method proposed in "Standard Methods for Sample Collection and Specimen Preparation" of ISRM and Korean Rock Engineers Standard Rock Test Method was used. The specimen for the measurement of the expansion displacement was cylindrical with a height of 10 cm and a diameter of 5 cm. The existing swelling analysis method evaluates the sensitivity to weathering by using the maximum expansion displacement, but since the classification by bedrock grade is unclear, it is reasonable to use the rate of change of the expansion displacement according to the immersion time. It is necessary to conduct an experiment to distinguish between weathering and fault deterioration. In addition, long-term weathering prediction technology for each cancer type is needed through the expansion displacement analysis of the chemical weathering stage.

Development of a new test method for the prediction of TBM disc cutters life (TBM 디스크 커터의 수명 예측 방법 개발)

  • Kim, Dae-Young;Farrokh, Ebrahim;Jung, Jae-Hoon;Lee, Jae-Won;Jee, Sung-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.475-488
    • /
    • 2017
  • Wear prediction of TBM disc cutters is a very important issue for hard rock TBMs as number of cutter head intervention. In this regard, some model such as NTNU, Gehring model, CSM models have been used to predict disc cutter wear and intervention interval. There are some deficiencies in these models. This paper developed a new test method for wear prediction for TBM disc cutter and proposed a new abrasion index. In this regard, different abrasivity indices along with their testing methods are explained. A comparative study is performed to develop the predictability of different cutter life evaluation methods and index. The evaluation of the new methods proposed in this paper shows a very good agreement with the actual cutter life and intervention interval length. The proposed tester and index can be easily used to predict the intervention interval length and cutter wear evaluation in both planning and construction stages of a TBM tunneling project.

Asphalt Concrete Pavement Response to Moving Load and Viscoelastic Property (아스팔트 혼합물의 점탄성과 차량의 이동 속도가 포장 거동에 미치는 영향)

  • Jo, Myoung-hwan;Kim, Nakseok;Seo, Youngguk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4D
    • /
    • pp.485-492
    • /
    • 2008
  • This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. A series of field tests have been conducted on three pavement sections (A2, A5, and A8) at the Korea Expressway Corporation (KEC) test road. The effect of vehicle speed on the responses of each test section was investigated at three speeds: 25 km/hr, 50 km/hr, and 80 km/hr. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of finite element (FE) analyses. A commercial FE package, ABAQUS was used to model each test section and a step loading approximation has been adopted to simulate the effect a moving vehicle. For viscoelastic analysis, relaxation moduli of asphalt mixtures were obtained from laboratory test. Field responses reveals the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains) and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than longitudinal strain, and strain reduction was more significant in lateral direction.

A petrological study on the formation of geological heritage around Sangjogam County Park, Goseong, Gyeongsangnam-do (천연기념물 제411호 경남 고성 덕명리 공룡화석 산지 일원 병풍바위의 형성에 관한 암석학적 연구)

  • Kong, Dal-Yong;Cho, Hyeong-Seong;Kim, Jae-Hwan;Yu, Yeong-Wan;Jung, Seung-Ho;Kim, Tae-Hyeong;Kim, Jong-Sun;Jeong, Jong-Ok;Kim, Kun-Ki;Kwon, Chang-Woo;Son, Moon
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.2
    • /
    • pp.78-91
    • /
    • 2018
  • Sangjogam, located in Goseong, Gyeongsangnam-do, was designated as Natural Monument #411, because of its diverse geological heritage, such as fossils, ripple marks, dykes, and columnar joints. In the area, Byeongpungbawi, with its beautiful columnar joints vertical to the bedding plane of the underlying sedimentary rocks and spectacular coastal view, was named after its overall shape reminiscent of a huge folding screen. The purpose of this study was to investigate the formation process of the columnar joints using the anisotropy of magnetic susceptibility (AMS) method. AMS measurements showed that the k1 and k3 values representative of directions of the long and short axes of a magnetic particle at each point strongly clustered, and the oblate magnetic foliation structure in Byeongpungbawi developed during sill-type intrusion rather than lava flow. In summary, Byeongpungbawi was produced by sill-type intrusion along the bedding plane of the underlying sedimentary layer, and the subsequent formation of columnar joints was accompanied by the cooling and contraction of intruding rhyolite magma. This study potentially provides a basic research tool in understanding the formation mechanism of columnar joints which are widely distributed in southern Korea.

A Study on the Static Behaviors of Steel Deck Plates of Skew Bridges (사교(斜橋)의 강상판(鋼床板)의 정적거동(靜的擧動)에 대한 연구(研究))

  • Yang, Chang Hyun;Oh, Gi Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.815-826
    • /
    • 1994
  • Skew bridges are found frequently in new bridge construction due to geographical conditions when new constructing bridges are put across the existing highways, railroads or rivers. This study is to investigate the static behaviors of the steel deck plates of skew bridges which are increasingly used in bridges due to outstanding quality of structural steels, development of welding techniques, in order to reduce dead loads and period of constructions. The static behaviours of steel deck plates are analyzed using general purpose FE code SAP90 by modeling the skewed deck plates with rigorous finite elements, as the skew angles vary. The results of finite element analysis for the behaviors of steel deck plates and concrete slabs in acute, obtuse corners and center of decks are compared and discussed as the skew angles vary from $90^{\circ}$ to $30^{\circ}$. Two types of decks are treated, as isotropic plates and orthotropic plates, respectively. From the results of finite element analysis, it is found that more moments, reactions, and deflections occur at the obtuse corners than at the center of skewed decks regardless of isotropy or orthotropy. Especially, in case of the skewed deck plates with skew angles less than 45 degrees, significantly large discrepancies for the values of those internal forces are shown between the skewed and right deck plates. This study estimates the characteristics of deck behaviors according to skew angles, and proposes limitations of skew angles and the ciritical regions of decks.

  • PDF

Application of High-Performance Steels to Enhance the Punching Shear Capacity of Two-Way Slabs (2방향 슬래브의 펀칭전단성능 향상을 위한 고성능 철근의 적용)

  • Yang, Jun Mo;Shin, Hyun Oh;Lee, Joo Ha;Yoon, Young Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • Two-way slabs reinforced with high-performance steels, which have several practical advantages of a reduction of congestion in heavily reinforced members, savings in the cost of labor and repair, the higher corrosion resistance, and a reduction of construction time, were constructed and tested. The influences of the flexural reinforcement ratio, concentrating the reinforcement in the immediate column region, and using steel fiber-reinforced concrete (SFRC) in the slab on the punching shear resistance and post-cracking stiffness were investigated, and compared with the punching shear test results of the slabs reinforced with conventional steels and GFRP bars. In addition, the strain distribution of flexural reinforcements and crack control were investigated, and the effective width calculating method for the average flexural reinforcement ratio was estimated. The use of high-performance steel reinforcement increased the punching shear strength of slabs, and decreased the amount of flexural reinforcements. The concentrating the top mat of flexural reinforcement increased the post-cracking stiffness, and showed better strain distribution and crack control. In addition, the use of SFRC showed beneficial effects on the punching shear strength and crack control. It was suggest that the effective width should be changed to larger than 2 times the slab thickness from the column faces.