• Title/Summary/Keyword: 단조

Search Result 1,514, Processing Time 0.047 seconds

UBET Analysis of Combined Forging of Non-Axisymmetric Shapes With Inclined Protrusion (경사진 돌출부가 있는 비축대칭 복합단조의 상계요소해석)

  • 윤정호;양동열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.1-12
    • /
    • 1990
  • The study is concerned with the analysis of combined forging of non-axisymmetric shapes with inclined protrusions by UBET technique. Work hardening is considered for the given range of strain rate during the forging process. A complex shape with inclined cavities is analyzed by subdividing the workpiece into finite UBET elements for which simple velocity fields are applicable. An experimental set-up was designed and manufactured for the experiment, and experiments are carried out with lead billets. The devised set-up can be used for closed-die forging of complex shapes with protrusions in which the dies can be separated automatically for easy removal of the forged products. Based on the derived kinematically admissible velocity fields for corresponding UBET elements, general computer programs have been developed. Since the energy dissipation rate for each elemental region is provided by subprograms (Subroutine or Function), the developed program can be applied to the forging problems of various shapes. The present study has shown that the method developed can be effectively applied to forging of non-axisymmetric shapes with complicated protrusions.

Analysis of Mateiral Flow in Metal Forming Processes by Using Computer Simulation and Experiment with Model Material (소성가공시 재료유동에 대한 수치해석 및 모델실험)

  • 김헌영;김동원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.285-299
    • /
    • 1993
  • The objective of the present study is to analyze material flow in the metal forming processes by using computer simulation and experiment with model material, plasticine. A UBET program is developed to analyze the bulk flow behaviour of various metal forming problems. The elemental strain-hardening effect is considered in an incremental manner and the element system is automatically regenerated at every deforming step in the program. The material flow behavior in closed-die forging process with rib-web type cavity are analyzed by UBET and elastic-plastic finite element method, and verified by experiments with plasticine. There were good agreements between simulation and experiment. The effect of corner rounding on material flow behavior is investigated in the analysis of backward extrusion with square die. Flat punch indentation process is simulated by UBET, and the results are compared with that of elastic-plastic finite element method.

A Study on Subcritical Crack Growth Parameters in Rock-like Material under Monotonic and Cyclic Loading (단조 및 반복하중 하에서의 모사 암석 시료의 임계하 균열성장 지수에 관한 연구)

  • Ko, Tae Young
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.124-134
    • /
    • 2019
  • Subcritical crack growth in rock material can occur under monotonic and cyclic loading. Subcritical crack growth plays an important role in evaluating the long-term stability of structures in rocks. This paper presents the results of studies conducted to determine subcritical crack growth parameters under monotonic and cyclic loading in rock-like material. The constant stress rate method was employed for monotonic loading. The subcritical crack growth parameter of n under cyclic loading was determined by the relation between the rate of crack growth per cycle and stress intensity factor range. The specimens contained pre-existing flaws with 45 and 60 degrees of inclination angle and flaws spacing and continuity were varied to arrange crack growth in shear or tensile manner. The results show that the parameter of n is almost constant regardless of the applied load conditions such as monotonic and cyclic or shear and tension.

Analysis of Deflection of Reinforced Concrete Flexural Members under Monotonic Loading (단조하중을 받는 철근콘크리트 휨부재의 처짐해석)

  • Byun, Keun Joo;Kim, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.69-78
    • /
    • 1991
  • This paper concentrates on the analysis of deflection of the reinforced concrete flexural members under monotonic loading. Concrete is treated as an orthotropic nonlinear material. The concept of equivalent strain and crack strain are used to establish independent stress-strain relationships in the directions of orthotropy. Steel is modeled as an elstoplastic material, and von Mises failure criterion is applied. The finite element computer program for the nonlinear analysis of the deflection of RC flexural members under monotonic loading is developed. The accuracy and reliability of the numerical procedure is demonstrated by the FEM analysis and experiments of the under reinforced concrete beams over the entire loading range up to failure.

  • PDF

An upper-bound analysis for the guiding type forging of helical gears (헬리컬기어의 안내형 단조에 관한 상계해석)

  • Choi, J.C.;Choi, Y.;Tak, S.J.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1364-1372
    • /
    • 1997
  • In this paper, the forging of helical gears has been investigated. Punch is tooth-shaped as is the die insert. The punch compresses a cylindrical billet placed in a die insert. As a consequence the material of billet flows into the tooth region. The forging has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent tooth profile of the gear. Numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth, helix angle and friction factor on the forging of helical gears. Some forging experimentswere carried out with aluminum alloy to show the validity of the analysis. Good agreement was found between the predicted values of the forging load and obtained from the experimental results.

The Study for Cold Forging of Spline with Different Friction Factor on Die Surface (금형면 마찰조건을 달리한 스플라인 단조에 관한 연구)

  • Kim, Kwan-Woo;Lee, Seok-Jin;Kim, Moon-Ki;Cho, Seong-Yeol;Cho, Hae-Yong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.295-303
    • /
    • 2009
  • Forging of square spline was investigated by using finite element methods in this study. Spline is widely used by torque transmitter in the fields of automobile, aircraft, and shipping etc. Friction on the surface of die is regarded as the most important factor to improve the dimensional accuracy for complete forming of spline teeth. Finite element simulation was carried out to improve the formability of the spline, especially remove unnecessary burrs which were extruded in gap between the die and the punch. To remove the burrs, various friction factors are considered on the surfaces of the die in the simulations and punch flat surface was designed. The simulated results were compared with experimental ones. As a results, it is possible to control the growth of burrs and improve formability of spline teeth by applying various friction factors and design of punch flat surface.

Ultrasonic Characteristics of Internal Planar Defects of a Hot Forged Al-Si Alloy Part (Al-Si 합금 열간단조품 내부의 판상 결함의 초음파 특성)

  • Lee, Seok-Won;Joun, Man-Soo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.6
    • /
    • pp.612-617
    • /
    • 2001
  • A nondestructive evaluation technique for detecting internal defects of an hot forged Al-Si alloy part is established in this study. Ultrasonic characteristics of various internal planar defects are investigated by experiments for establishing a reliable test procedure. The effect of the angle between ultrasonic energy propagation directions and planar defects on the ultrasonic signal configuration is evaluated in the pulse-echo technique. A characteristic of ultrasonic signal for the internal planar defect located near the edge is also evaluated. The applicability of the through-transmission technique is also discussed. Reliability of the presented approach is validated by the destructive testing for more than 500 specimens.

  • PDF

The elastic strain analysis of forged product and die according to the forging mode (단조형식에 따른 단조품과 금형의 탄성 변형에 관한 연구)

  • Lee, D.K.;Lee, Y.S.;Kim, W.I.;Lee, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.586-591
    • /
    • 2001
  • In the cold forging, elastic deformation of the die has been investigated to improve the accuracy of cold forged parts with F.E.M analysis using DEFORM, and with experiments using strain gauges. In the experiments, initial billet was selected to easily find the effect of elastic deformation according to the forging modes, extrusion and upsetting type, and only extrusion type. Elastic deformation of the die can be obtained by the signal from the strain gauges and this signal can be amplified by data acquisition system during the process. In the F.E.M analysis, two types of analysis are used to predict elastic strain of the die. To improve an accuracy of forged product and die dimension, this study compared with strain distribution between experiment and F.E.M analysis. As a result, the history of the deformation of the die and elastic recovery of forged product can be obtained by the elastic strain analysis of forged product and die according to the forging modes.

  • PDF

Estimation of Flexural Rigidity of R/C Beam Strengthened with CFS subjected to repeated loadings (반복하중을 받는 CFS로 보강된 R/C 보의 휨 강성 평가)

  • Kim, Chung-Ho;Jang, Jong-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.231-238
    • /
    • 2004
  • The deterioration of the flexural capacity by progressive crack and over deflection in R/C bridges is developed actually from the dynamic repeated loading due to vehicle traffics. Such a fact suggest a necessities of confirmation and estimation of the data acquired from monotonic incremental loading test. Therefore, this study carry out the monotonic incremental loading test and dynamic repeated loading test in R/C beams strengthened with CFS. By dynamic repeated loading test, the experiments confirmed the validities and fittness of the results acquired from monotonic incremental loading test and estimated the characteristics of the moment-curvature, degradation of the flexural rigidity, crack and failure.

An Analysis of Turbine Disk Forging of Ti-Alloy by the Rigid-Plastic Finite Element Method (강소성 유한요소법을 이용한 Ti 합금 터빈디스크의 단조공정 해석)

  • 조현중;박종진;김낙수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2954-2966
    • /
    • 1994
  • The characteristics and good corrosion resistance at room and elevated temperatures led to increasing application of Ti-alloys such as aircraft, jet engine, turbine wheels. In forging of Ti-alloy at high temperature, die chilling and die speed should be carefully controlled because the flow stress of Ti-alloy is sensitive to temperature, strain and strain-rate. In this study, the forging of turbine disk was numerically simulated by the finite element method for hot-die forging process and isothermal forging process, respectively. The effects of the temperature changes, the die speed and the friction factor were examined. Also, local variation of process parameters, such as temperature, strain and strain-rate were traced during the simulation. It was shown that the isothermal forging with low friction condition produced defect-free disk under low forging load. Consequently, the simulational information will help industrial workers develope the forging of Ti-alloys including 'preform design' and 'processing condition design'. It is also expected that the simulation method can be used in CAE of near net-shape forging.