• Title/Summary/Keyword: 단조

Search Result 1,514, Processing Time 0.031 seconds

Efficient Subsequence Searching in Sequence Databases : A Segment-based Approach (시퀀스 데이터베이스를 위한 서브시퀀스 탐색 : 세그먼트 기반 접근 방안)

  • Park, Sang-Hyun;Kim, Sang-Wook;Loh, Woong-Kee
    • Journal of KIISE:Databases
    • /
    • v.28 no.3
    • /
    • pp.344-356
    • /
    • 2001
  • This paper deals with the subsequence searching problem under time-warping in sequence databases. Our work is motivated by the observation that subsequence searches slow down quadratically as the average length of data sequences increases. To resolve this problem, the Segment-Based Approach for Subsequence Searches (SBSS) is proposed. The SBASS divides data and query sequences into a series of segments, and retrieves all data subsequences that satisfy the two conditions: (1) the number of segments is the same as the number of segments in a query sequence, and (2) the distance of every segment pair is less than or equal to a tolerance. Our segmentation scheme allows segments to have different lengths; thus we employ the time warping distance as a similarity measure for each segment pair. For efficient retrieval of similar subsequences, we extract feature vectors from all data segments exploiting their monotonically changing properties, and build a spatial index using feature vectors. Using this index, queries are processed with the four steps: (1) R-tree filtering, (2) feature filtering, (3) successor filtering, and (4) post-processing. The effectiveness of our approach is verified through extensive experiments.

  • PDF

Fabrication and Properties of Reaction Squeeze Cast ($Al_2O_3{\cdot}SiO_2+Ni$)/Al Hybrid Metal Matrix Composites (반응 용탕단조한($Al_2O_3{\cdot}SiO_2+Ni$)/Al 하이브리드 금속복합재료의 제조 및 특성)

  • Kim, Sang-Suk;Park, Ik-Min;Kim, Sung-Joon;Choi, Il-Dong
    • Journal of Korea Foundry Society
    • /
    • v.17 no.4
    • /
    • pp.338-346
    • /
    • 1997
  • Mechanical properties of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites fabricated by the reaction squeeze casting were compared with those of ($15%Al_2O_3{\cdot}SiO_2$)/Ai composites. Al-Ni intermetallic compounds ($10{\sim}20 {\mu}m$) formed by the reaction between nickel powder and molten aluminum were uniformly distributed in the Al matrix. These intermetallic compounds were identified as $Al_3Ni$ using X-ray diffraction analysis and they resulted in beneficial effects on room and high temperature strength and wear resistance. Microhardness values of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composite were greater by about 100Hv than those of ($15%Al_2O_3{\cdot}SiO_2$)/Al composite. Wear resistance of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites was superior to that of ($15%Al_2O_3{\cdot}SiO_2$)/Al composites regardless of the applied load. While tensile and yield strength of ($10%Al_2O_3{\cdot}SiO_2+5%Ni$)/Al hybrid composites were greater at room temperature and $300^{\circ}C$, strength drop at high temperature was much smaller in hybrid composites.

  • PDF

Evaluation on Stiffness of Mortar-filled Sleeve Splice Using Estimation Method of Failure Mode (파괴모드 추정방법을 이용한 모르타르 충전식 슬리브 철근이음의 강성 평가)

  • Kim, Hyong Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.27-34
    • /
    • 2012
  • The objective of this study is to evaluate the stiffness of mortar-filled sleeve bar splice using estimation method of failure mode in the sleeve reinforcement splice. To attain this goal, we analyzed the test results of 261 actual-sized mortar-filled sleeve splice specimens. The study results showed that the estimation method of the failure mode in mortar-filled sleeve bar splice made an effective estimate of the stiffness in this bar splice with the exception of specimens with SD500 bars and smooth pipe sleeve. Especially, of the specimens with cast sleeve or uneven pipe sleeve in the range of reinforcement fracture using the estimation method of the failure mode in mortar-filled sleeve splice, specimens over 98% with SD400 bars and all specimens with SD500 bars had the stiffness capacity of higher than "A" class of AIJ code in monotonic loading. In addition, of the specimens in the range of reinforcement fracture using the estimation method of the failure mode in mortar-filled sleeve splice, all specimens with SD400 bars and SD500 bars had the stiffness capacity of higher than "A" class of AIJ code in cyclic loading.

Statistical methods for evaluating the tracking phenomenon of blood pressure (혈압의 역학적 연구와 지속성(tracking)에 대한 통계학적 분석)

  • Suh, Il;Nam, Chung-Mo;Kang, Hyung-Gon
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.191-200
    • /
    • 1993
  • This study introduced speical characteristics of an epidemiologic study on blood pressure and compared several statistical methods for evaluating the tracking phenomenon of blood pressure for Korean children. While correlation coefficients adjusted for measurement error are commonly used for the evaluation of tracking, it is hard to interpretate the results when correlation functions for lag-difference are not monotonous. McMahan defined a tracking as maintenance of relative rank over time and calculated tracking index usng growth curve model. The tracking index in McMahan's model is complicate to calculate, and it is hard to determine the degree of growth curve parameter. Blomqvist showed the relationship between the rate of change and the initial value. This concept could be extended for the evaluation of tracking. However, it is not so easy to interpretate the estimates in his model when those are non-positive.

  • PDF

Rolling Contact Fatigue Behavior and Microstructure Control to Medium Carbon Steel Base Hot Forgings (중탄소계 열간단조품의 미세조직과 구름피로거동)

  • Lee J. S.;Son C. H.;Moon H. K.;Song B. H.;Park C. N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.287-290
    • /
    • 2005
  • Once hot forgings for automotive parts such as wheel bearing flange to which cyclic asymmetric bending stress is continuously applied are produced, it is necessary to control their microstructure to obtain superior mechanical properties. It is however hard to control the microstructure uniformly because the strength is reduced as coarsening of ferrite grains. To investigate the microstructural alteration according to process variables during hot working, the variation of the ferrite grain size was studied by utilizing of the computer aided servo-hydraulic Gleeble tester which is hot deformation behavior reproduction equipment. In addition, the effect of the ferrite grain size of raw material on the austenite grain behavior of hot forgings was also examined. The rolling contact fatigue resistance of the induction hardened SAE 1055 steel was compared with the occasion of the same condition of SAE52100 bearing steel. As a result, it was confirmed that the ferrite grain sizes of the forgings depend on the heating temperature and cooling start temperature during hot forging and cooling processes. The induction hardened SAE1055 steel showed a superior rolling contact fatigue resistance to the induction hardened SAE52100 steel. The reason is that SAE1055 steel is freer from the material defect such as segregation than the comparative steel.

  • PDF

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

A Study on the Bainite Phase Control of Direct-Quenched Low Carbon Steels (저탄소 직접 소입강의 베이나이트상 조절에 관한 연구)

  • An, Byeong-Gyu;Go, Yeong-Sang;Lee, Gyeong-Seop
    • Korean Journal of Materials Research
    • /
    • v.6 no.8
    • /
    • pp.841-851
    • /
    • 1996
  • In a recent investigation, the formation of bainite phase in direct-quenched low carbon non heat-treated steel was reported. In this study the effects of bainite phase on the mechanical properties of direct-quenched microalloying steels were investigated. By isothermal transformation at $480^{\circ}C$ for 7 sec., volume fraction of bainite lath was 15~20%, and the UTS and impact energy were increased. In this case $B_{ll}$ and $B_{lll}$ type bainite was observed and the fractography of impact test specimen showed a ductile fracture tendency. Isothermal transformation for 100sec., yielded 30% volume fraction of granular bainite and the mechanical properties were decreased. The f ractography of impact test specimen showed a brittle fracture tendency. The addition of Mo was more effective than B for improving impact energy because amounts of boron aditions were restricted to considerably lower levels, typically 10~ 30ppm. From this study, it is predicted that 15~20% volume fraction of lath bainite on the direct quenching process is procduced by addition of Mo up to 1.2wt. % and controlling the finish forging proc¬ess at $1000^{\circ}C$ and using oil as direct quenching media. This will improve mechanical properties of the direct- quenched steel.

  • PDF

Effect of Quenching Temperature and Cooling Rate on the Mechanical Properties of Direct Quenched Micro-Alloyed Steel for Hot Forging (직접Quenching 열간 단조용 비조질강의 기계적 성질에 미치는 Quenching온도 및 냉각속도의 영향)

  • Shin, Jung-Ho;Ryu, Young-Joo;Kim, Byung-Ok;Ko, In-Yong;Lee, Oh-Yeon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.513-518
    • /
    • 2012
  • Recently, automobile parts have been required to have high strength and toughness to allow for weight lightening or improved stability. But, traditional micro-alloyed steel cannot be applied in automobile parts. In this study, we considered the influence of quenching temperature and cooling rate for specimens fabricated by vacuum induction furnace. Directly quenched micro-alloyed steel for hot forging can be controlled according to its micro structure and the heat-treatment process. Low carbon steel, as well as alloying elements for improvement of strength and toughness, was used to obtain optimized conditions. After hot forging at $1,200^{\circ}C$, the ideal mechanical properties (tensile strength ${\geq}$ 1,000 MPa, Charpy impact value ${\geq}\;100\;J/cm^2$) can be achieved by using optimized conditions (quenching temperature : 925 to $1,050^{\circ}C$, cooling rate : ${\geq}\;5^{\circ}C/sec$). The difference of impact value according to cooling rate can be influenced by the microstructure. A fine lath martensite micro structure is formed at a cooling rate of over $5^{\circ}C/sec$. On the other hand, the second phase of the M-A constituent microstructure is the cause of crack initiation under the cooling rate of $5^{\circ}C/sec$.

Flexural Behavior of Reinforced Concrete Beams Exposed to Freeze-Thawing Environments (동결융해 환경에 노출된 철근콘크리트 보의 휨 거동특성)

  • Jang, Gwang-Soo;Yun, Hyun-Do;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.126-134
    • /
    • 2009
  • Generally, reinforced concrete structures exposed to the outside temperature are affected by freezing and thawing process during winter and early spring. These freeze-thawing process can lead to the reduction in durability of concrete as cracking or surface spalling. This paper is to study the flexural behavior of RC beams exposed to freeze-thawing environments. To compare the difference in flexural behavior of RC Beams, limited tests were conducted under different types of Longitudinal steel ratio and freeze-thawing cycles. For this purpose, fourteen small-scale RC beams ($100mm{\times} 100mm {\times}600mm$) were strengthened in monotonic and cyclic loadings, subjected to up to 150, 300 cycles freeze-thawing from $-18{\sim}4^{\circ}C$. It is thought that experimental results will be used as basic data to evaluate flexural behavior of RC beams exposed to freeze-thawing.

Potential Damage Region Investigation of WC-Co Cemented Carbide Die Based on Finite Element Analysis of Cold Forging Process (냉간 단조 공정의 유한 요소 해석에 기반한 WC-Co 초경 금형의 파손 위험 영역 평가)

  • Ryu, S.H.;Jung, S.H.;Jeong, H.Y.;Kim, K.I.;Cho, G.S.;Noh, W.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.376-383
    • /
    • 2022
  • The potential damage region of a WC-Co cemented carbide die is investigated for cold forging process of a wheel-nut by numerical simulation with its chemical composition considered. Numerical simulation is utilized to calculate internal stress, especially for the WC-Co die, during the forging process. Finite element model is established, in which the elasto-plastic properties are applied to the work-piece of bulk steel, and elastic properties are considered for the lower die insert of the WC-Co alloy. This stress analysis enables to distinguish the potential damage regions of the WC-Co die. The regions from calculation are comparatively analyzed along with the crack area observed in the die after repetitive manufacturing. Effect of chemical composition of the WC-Co is also evaluated on characteristics of potential damage region of the die with variance of mechanical properties considered. Derived from Mohr-Coulomb fracture model, furthermore, a new stress index is presented and used for die stress analysis. This index inherently considers hydrostatic pressure and is then capable of deducing wide range of its distribution for representing stress state by modification of its parameter implying pressure sensitivity.