• 제목/요약/키워드: 단조금형

검색결과 226건 처리시간 0.022초

단조품의 정밀도 향상을 위한 금형의 탄성변형 예측 (The Prediction of Elastic Deformation of Forging Die to Improve Dimensional Accuracy)

  • 최종웅;이영선;이정환
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2610-2618
    • /
    • 2000
  • In this paper, the elastic deformation of cold forging die has been investigated to improve the accuracy of forged parts with FEM analysis and experiments using the strain gages. In the finite element analysis, two types of analysis are used to predict elastic deformation of die. The one is that dies are considered to be elastic body from initial stage to final one, and the other is that the dies are considered to be rigid body during forging simulation and then considered to be elastic body at elastic analysis. Considering the results of analysis and experiments, it is likely that the analytical results are in good agreement with experimental inspections. The method using the elastic assumption of die relatively takes a lot of time to simulate the forming operation. However, It is better that using an elastic die to predict not only the shape of product but also filling of die cavity.

온간 스파이더 표면결함 개선과 금형수명 향상에 관한 연구 (A Study on the Elimination of Surface Defect and Increase in Tool Life of the Warm Forged Spider)

  • 강종훈
    • 한국기계가공학회지
    • /
    • 제19권5호
    • /
    • pp.82-90
    • /
    • 2020
  • Due to the complicated shape of the spider, the production method was changed from cold to warm forging. Finite element analysis was performed to predict the forging load and shape using the enclosed hydraulic die set. As the forging load increases due to the spider die volume, die stress analyses were performed to optimize the die design in order to reduce the die stress in various conditions. Large deformation while producing the complicated forging parts induces high forging load, which is one of the main parameters of the forging surface defects. The forging process was analyzed to find out the root cause of the surface defects generated during the spider production for various parameters, thereby revealing that the radius of die in the defect zone influenced the air trap depth, being the root cause of the surface defect. It was verified that die life was increased and the surface defect was eliminated by changing the die design during the mass production test.

윤활제와 표면처리에 따른 온간단조 금형의 열적특성 평가 (Evaluation of Thermal Characteristics for Warm Forging Die due to Lubricants and Surface Treatments)

  • 김종호;김동진;정덕진;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.833-836
    • /
    • 2000
  • The mechanical and thermal load. and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause wear. heat checking and plastic deformation, etc. This study is for the effects of solid lubricants and surface treatments for warm forging die Because cooling effect and low friction are essential to the long lift of dies. optimal surface treatments and lubricants are very important to hot and warm forging Process. The heat that is generated by repeated forging processes. and its transfer are important factors to affect die life. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these. experiments art performed for diffusion coefficient and heat transfer coefficient in various conditions - different initial billet temperatures and different loads. Carbonitriding and ionitriding are used as surface treatments. and oil- base and water-base graphite lubrirants are used. The effects of lubricant and surface treatment for warm forging die lift are explained by their thermal characteristics.

  • PDF

크라운 치형을 갖는 직선 베벨기어의 제작 및 검증을 위한 CAD/CAM 시스템 활용 (Application of CAD/CAM System to the Manufacturing and the Verification of Straight Bevel Gear with Crown Teeth)

  • 이강희;박용복
    • 한국산학기술학회논문지
    • /
    • 제9권2호
    • /
    • pp.270-275
    • /
    • 2008
  • 자동차용 직선 베벨기어는 대량으로 생산되고 있기 때문에 생산성 향상을 위해 기어가공용 전용기에서 직접 가공하던 것을 냉간 단조 제조방식으로 변경되어 생산되고 있다. 시행착오를 최소화하여 단조에 의한 정확한 최종 형상의 정밀 제품을 조기에 개발하고, 반복 재현성을 확보하는 방법으로 CAD/CAM 시스템의 도입이 필요하다. 본 연구에서는 CAD/CAM 시스템을 활용하여 크라운 치형을 갖는 직선 베벨기어를 모델링 한다. 이를 토대로 NC 데이터 생성과 검증을 통해 가공품을 사전에 예측을 한 후 물림시험의 결과를 통해 마스터 기어를 제작한다. 이러한 마스터기어를 통하여 금형제작이나 가공에 필요한 지그제작을 가능하게 한다.

선박엔진용 초대형 열간단조품, 피스톤크라운의 단조공정 및 금형 설계 (Process Planning and Die Design for the Super Hot Forging Product, the Piston Crown Used in Marine Engine)

  • 황범철;이우형;배원병;김철
    • 소성∙가공
    • /
    • 제17권8호
    • /
    • pp.600-606
    • /
    • 2008
  • In closed-die hot forging, a billet is formed in dies such that the flow of metal from the die cavity is restricted. Some parts can be forged in a single set of dies, whilst others, due to shape complexity and material flow limitations, must be shaped in multi sets of dies. The purpose of a performing operation is to distribute the volume of the parts such that material flow in the finisher dies will be sound. This study focused on the design of preforms, flash thickness and land width by theoretical calculation and finite element analysis, to manufacture the super hot forging product, 70MC type piston crown used in marine engine. The optimal design of preforms by the finite element analysis and the design experiment achieves adequate metal distribution without any defects and guarantees the minimum forming load and fully filling of the cavity of the die for producing the large piston crown. The maximum loads obtained by finite element analysis are compared with the results of experiments. The loads of the analysis have good agreements with those of the experiment. Results obtained using DEFORM-2D enable the designer and manufacturer of super hot forging dies to be more efficient in this field.

임의 형상의 다이를 이용한 반용융 단조 공정의 유한요소해석 (A Finite Element Analysis of Thixoforging Process by using Arbitrarily Shaped Dies)

  • 강충길;김남석
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.123-134
    • /
    • 1999
  • A new forming technology has been developed to fabricate near-net shape components by using aluminum alloys with globular microstructure. The estimations of filling characteristic in the forging simulation with arbitrarily shaped dies of SSM are calculated by finite element method with proposed algorithm. The proposed model and various boundary conditions for arbitrarily shaped die are investigated with the coupling calculation between the liquid phase flow and the solid phase deformation. The simulation processes with arbitrarily shaped dies are performed on the isothermal conditions and axisymmetric problems. To analyze the forging process simulation with SSM, new stress-strain relationship for semi-solid behaviour is described, and forging the liquid flow. Furthermore, For the purpose of getting net shape of SSM, it is important to be obtain a solid fraction in forging process with arbitrarily shaped dies. To produce a automotive part which have good mechanical properties, the filling pattern in accordance with die velocity and solid fraction distribution has to be estimated for arbitrarily shaped die.

  • PDF

중공소재에 의한 스퍼어기어의 냉간단조에 관한 연구 (A Sudy on the Cold Forging of Spur Gears form Hollow Cylindrical Billets)

  • 최재찬;김창호;허관도;최영
    • 한국정밀공학회지
    • /
    • 제12권8호
    • /
    • pp.63-72
    • /
    • 1995
  • Closed-die forging of spur gears with hollow cylindrical billet has been analysed by using the upper-bound method. A kinematically admissible velocity field has been developed, wherein, an involute curve has been introduced to represent the forging die profile. In the analysis, the deformation region has been divided into nine zones. A constant frictional stress has been assumed on the contacting surfaces. Utilizing the formulated velocity field, numerical calculations have been carried out to investigate the effects of various parameters, such as module, number of teeth and friction factor, on the forging of spur gears. Hardness and accuracy of forged gears are measured. The following results have been obtained: (1) It is verified that an axisymmetric deformation zone exists between root circle and center of gear through forged gears. (2) The average relative forging pressure is predominantly dependent on the number of teeth and increases near the final filling stage as the addendum modification coefficient increases. (3) Close agreement was found between the predicted values of forging load and those obtained from experimental results.

  • PDF

성형하중을 감소시키기 위한 아우터 타이로드의 열간 단조해석 (Hot Forging Simulation of Outer Tie Rod for Reducing Forming Load)

  • 김영준;안교진;이권희;박영철
    • 한국산학기술학회논문지
    • /
    • 제16권3호
    • /
    • pp.1652-1657
    • /
    • 2015
  • 최근 차량 성능이 개선됨에 따라 차량의 부품 수 및 중량이 증가하는 추세이다. 아우터 타이로드는 다른 차량 부품에 비해서 중량이 작지만, 자동차의 연비 향상을 위해서는 아우터 타이로드의 중량을 감소시킬 필요가 있다. 따라서 이전 연구에서는 아우터 타이로드를 설험계획법과 메타모델을 사용하여 좌굴성능을 만족시키는 아우터 타이로드의 모델을 제시하였다. 아우터 타이로드는 단조 공정을 통해서 제작되어지는데, 본 연구에서는 실제 성형가공 공정을 토대로 아우터 타이로드의 단조해석을 통해서 금형 이동속도에 변화에 따른 성형하중의 크기를 비교하였다.

용탕 단조법에 의한 AC4A/Si$C_w$복합재료 제조에 관한 연구 (I) (Fabrication of ACtA/$SiC_w$ composite by squeeze casting (I))

  • 문경철;이준희
    • 한국재료학회지
    • /
    • 제2권6호
    • /
    • pp.461-467
    • /
    • 1992
  • 최근 선진국에서 강화되고 있는 CAFE(Corporate Average Fuel Economy :기업평균연비) 규제를 극복하기 위해서는 차량의 경량화가 필수적이며 이를 위해 기존의 금속재료에 비하여 비강도, 탄성계수, 인성등이 우수한 기계적 성질을 가지면서 고분자 기지의 복합재료에 비해서 고온강도, 전기 및 열전도도와 내마모성이 우수한 금속기지 복합재료의 개발은 필수적이고도 중요한 위치를 차지한다. 따라서 본 연구에서는 자동차용 부품재 및 일반산업용 재료로 사용되고 있는 AC4A Al합금에 Si$C_w$prefohm을 용탕 단조법으로 강화하여 복합재료를 제조란 후 matrix와 함계 기계적성질, 마멸특성, 조직실험을 행한 결과 용탕 단조법에 의한 AC4A/Si$C_w$ 복합재료의 최적 제조조건은 용탕온도 80$0^{\circ}C$, 금형은도 40$0^{\circ}C$, preform은도 750-80$0^{\circ}C$, 가압압력 75MPa이었으며 Si$C_w$강화재가 I/M재에 비하여 경도값은 두배이상으로 상승하였고 Si$C_w$ 20v/o에서는 가압에 의한 큰 효과는 없었다.

  • PDF

자동차 조향장치 부품 요크의 온간 밀폐 단조 적용을 위한 금형 응력 저감 설계 및 온간 단조품의 기계적 특성 분석 (Die Stress Reduction Design and Mechanical Properties Analysis of Warm Forging Process for the Application of Warm-Closed Forging of Automative Steering Unit Yoke)

  • 성상규;김기한;이영선;이상용;윤은유
    • 소성∙가공
    • /
    • 제31권2호
    • /
    • pp.51-56
    • /
    • 2022
  • In this study, finite element analyses were performed by applying a stress ring and split die design to relieve the tensile stress acting on the die due to high surface pressure during warm-closed forging. The applied material was a yield-ratio-control-steel (YRCS). It was used without quenching or tempering after forging. In the case of stress rings design, the number of stress rings and the tolerance for shrink fit were different. Vertical and horizontal splits were applied for insert die split design. Case 5 die with three stress rings, 0.2 % shrink fit tolerance, and vertical split was selected as an effective die design for tensile stress reduction. Based on die stress reduction analyses, Case 5 die for warm-closed forging was produced and smooth forgeability was secured, making it possible to manufacture forging product of yoke with the required geometry. In addition, controlled cooling using warm forging heat was applied to secure mechanical properties of yokes. When oil cooling was used for direct controlled cooling after warm-closed forging, a relatively uniform Rockwell hardness distribution and high mechanical properties could be obtained.