• 제목/요약/키워드: 단조금형

검색결과 226건 처리시간 0.027초

냉간단조품의 정밀도향상을 위한 금형해석 기법 (Methodology of tool analysis to improve the accuracy of cold forged parts)

  • Kim, T.H.;Kim, B.M.;Park, J.C.
    • 한국정밀공학회지
    • /
    • 제12권1호
    • /
    • pp.29-37
    • /
    • 1995
  • In many metal forming processes, it is common to use stress rings for reducing elastic deformation and failures of forming dies. But, shrink fit of dies inner diameter of die insert, machining is reuqired after shrink fit processes. The reduction of inner diameter can be predicted by the analysis of elastic-plastic finite element method. The dimension of dies before shrink fit can be determined to minimize or remove machining after shrink fit processes by deformation analysis of die. The computation of contacting stresses along die surface was analyzied by rigid plasitic finite element method, and data were interpolated by the contact search algorithm. In this paper, we propose the analysis method of forging dies after shrink fit and forming to improve dimensional accuracy of final products.

  • PDF

2차원 다단 단조공정의 금형해석 및 금형 설계를 위한 지원시스템 개발 (A Development of the Design Supporting System for 2D Multiple Stage Forming)

  • 이영규
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.124-128
    • /
    • 1999
  • Since the traditional designing approach of forming processes is based on trial and error it consumes much time and needs cost to design successful processes. Today for higher marketability of products a manufacturing system is required that can reduce production time and enhance product properties greatly. In order to implement the system a computerized design-supporting tool is indispensable for the design and supply of optimized production process for high product quality in short time In this study a design supporting system is developed and implemented to ballstud die. Using the developed system the designer can rapidly produce layouts of dies for each process sequences with consistency.

  • PDF

냉간 단조용 전방압출금형의 최적구조 설계에 관한 연구 (A Study on Optimal Design Rule for Forward Extrusion Die)

  • 김창훈;김시영;김종호
    • 동력기계공학회지
    • /
    • 제3권1호
    • /
    • pp.45-49
    • /
    • 1999
  • Lots of products are made in various working conditions, depending on the size and the shape of them. Usually, at first, the die for new items had been designed on the basis of experience and know-how, and then modified through trial and error. At a die design stage most of drawings have been drawn manually. Recently some forging companies save design time by repeated utilization of standardized parts with registered data base. In this study the automated die design technique for forward extrusion of axisymmetric products is developed. A standardized die system is proposed from the investigation of ones employed frequently in the metal forming field and the design rules for cold extrusion die. A design example of forward extrusion die is given and discussed.

  • PDF

기어류 부품의 단조 금형설계용 CAD 프로그램 개발 (A Development of CAD Program for Forging Die Design of Gear Components)

  • 최종웅;조해용;최재찬;조창용
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.21-31
    • /
    • 1998
  • This study described computer aided die design system for cold forging of non-axisymmetric parts. To design the die of cold forging. an integrated approach based on a rule-base system and commercial F. E. code were adopted. This system is implemented on the personal computer and its environment is a commercial CAD package named as AutoCAD. The system includes four modules. In the initial data input module, the variables which are necessary to design of die are inputted by user and die material are selected from the database. In the analysis and redesign module, stress distrubution action on the designed die is analyzed by commercial FEM code NISA II. The designed die is modified to prevent failure in both states of stress free and pressurizing. The developed system provides powerful capabilities for die design of non-axisymmetric parts.

  • PDF

냉간 단조품의 표면 및 내부에서의 연성파괴 해석 (Ductile fracture analysis on the surface and internal fracture of cold forged products)

  • 김태형;고대철;김병민;최재찬
    • 한국정밀공학회지
    • /
    • 제13권3호
    • /
    • pp.94-101
    • /
    • 1996
  • This paper presents an investigation of the ability of the scheme to simultaneously accomplish both prediction of fracture initiation and analysis of deformation in cold forged products. The Cockcroft-Latham criterion which is successfully applied to a variety of loading situations is used in the present investigation to estimate if and where surface and internal fracture occur during the deformation process. The numerical predictions and experimental results of two types of fundamental cold metal forming process taken into account are compared. Finite element simulation combined with fracture criterion has successfully predicted the site of surface or internal fracture initiation and corresponding to level of deformation observed experimentally.

  • PDF

베어링레이스의 온간성형에서 UBET 해석에 의한 공정개선 및 유동구속조건의 향상 (The Improvement of Bearing-Race Forming Process Using UBET Analysis)

  • 김영호;배원병;박재우
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.92-100
    • /
    • 1997
  • An upper-bound elemental technique (UBET) analysis is carried out to improve the material flow and to reduce the load of bearing-race forming process. The UBET analysis, which adapts the advantages of stream function and finite element method, is useful for predicting the profile of complex geometric bound- ary. From the UBET analysis, the forming load, the velocity distribution and the stream line of the deformed billet are determined by minimizing the total power consumption with respect to chosen parameters. The results of present UBET analysis are better than those of previous UBET analysis. Experiments have been carried out with model material plasticine billets at room temperature. The theoretical predictions for forming load and flow pattern(stream line) are in good agreement with the experimental results.

  • PDF

터빈 블레이드의 형단조 금형설계 시스템 개발 (Development of Die Design System for Turbine Blade Forging)

  • 조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 춘계학술대회논문집
    • /
    • pp.77-81
    • /
    • 1999
  • The predictions of metal flow forging load optimal die angle and preform size are not so easy in turbine blade forging. First of all the quality of final product is influenced by side force which is one of the significant factors. in this study slab method is applied to determine optimal die angle minimizing side force and the position of preform Finally drawing of die design is obtained in optimal die angle with developing tool that is composed of Visual Basic.

  • PDF