• Title/Summary/Keyword: 단일 카메라

Search Result 427, Processing Time 0.027 seconds

Fast Camera Pose Estimation from a Single Frame for Augmented Reality Applications (증강현실 시스템 구현을 위한 단일 프레임에서의 고속 카메라 위치추정)

  • Lee, Bum-Jong;Park, Jong-Seung;Sung, Mee-Young;Noh, Sung-Ryul
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.7-14
    • /
    • 2006
  • 본 논문에서는 3D 복원과 카메라 측정과정 없이 정확하게 카메라 자세를 계산하고 가상객체를 비디오에 합성하기 위한 단일 프레임 기반의 고속 계산 기법을 제안한다. 객체의 로컬 좌표와 단일 이미지에서의 대응되는 이미지 좌표로부터 카메라 자세를 계산한다. 정사영 투영모델에서의 분해기법에 기반한 구조 계산 방법으로 카메라 자세의 고속 추정이 가능하다. 정사영 투영모델에 기반하기 때문에 참조점의 설정에 따라 정확도가 달라진다. 객체에 따라 참조점을 설정하여 정확한 카메라 자세를 계산하는 방법을 제안한다. 카메라 자세 및 물체의 형태는 단일 프레임 기반으로 수행되며 카메라 자세 추정 결과가 즉시 비디오 합성에 사용될 수 있도록 하였다. 제안하는 기법의 유효성 입증을 위해 실사 비디오에 기반한 증강현실시스템을 구현하고 카메라 자세 계산과 비디오 합성의 전체 과정을 단일 프레임에 기반하여 실험을 수행하고 제안 기법의 실용성을 보였다.

  • PDF

3D Depth Estimation by a Single Camera (단일 카메라를 이용한 3D 깊이 추정 방법)

  • Kim, Seunggi;Ko, Young Min;Bae, Chulkyun;Kim, Dae Jin
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.281-291
    • /
    • 2019
  • Depth from defocus estimates the 3D depth by using a phenomenon in which the object in the focal plane of the camera forms a clear image but the object away from the focal plane produces a blurred image. In this paper, algorithms are studied to estimate 3D depth by analyzing the degree of blur of the image taken with a single camera. The optimized object range was obtained by 3D depth estimation derived from depth from defocus using one image of a single camera or two images of different focus of a single camera. For depth estimation using one image, the best performance was achieved using a focal length of 250 mm for both smartphone and DSLR cameras. The depth estimation using two images showed the best 3D depth estimation range when the focal length was set to 150 mm and 250 mm for smartphone camera images and 200 mm and 300 mm for DSLR camera images.

Developing an HDR Imaging Method for an Ultra-thin Light-Field Camera (초박형 라이트필드 카메라를 위한 HDR 이미징 알고리즘 개발)

  • Jiwoong Na;Jaekwan Ryu;Yongjin Jo;Min H. Kim
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.13-19
    • /
    • 2023
  • 카메라 센서의 한계로 인하여 촬영 장면에 따라 한 번의 촬영으로 모든 영역의 밝기가 적절하게 촬영되지 않는 경우가 존재한다. 이러한 센서의 한계는 하이 다이나믹 레인지 이미징 기술을 통해서 극복이 가능하다. 한 장면을 다양한 노출 설정으로 여러 번 촬영하는 브라케팅은 움직이는 피사체를 찍기에 적절하지 않으며 촬영 시간이 길다는 단점이 있다. 본 연구는 한 번의 촬영으로 서로 다른 노출의 이미지를 얻을 수 있는 소형 라이트필드 카메라를 제안한다. 라이트필드 카메라는 대표적으로 두 가지 형태가 있는데, 첫 번째는 여러 대의 카메라를 어레이로 배치한 라이트필드 카메라 시스템이며, 두 번째는 대물렌즈 뒤에 마이크로 렌즈 어레이를 배치한 카메라이다. 본 연구에서 제작된 초박형 라이트필드 카메라는 센서 위에 마이크로 렌즈어레이가 부착되어있는 형태의 카메라로 각 렌즈 조리개 크기를 다르게 설계하여 한 번의 촬영으로 다른 노출의 촬영 결과를 얻을 수 있게 설계되었다. 촬영된 단일 영상들을 전처리 하여 이미지 품질을 높인 이후, HDR 알고리즘을 통해 각 단일 이미지들보다 다이나믹 레인지가 넓은 이미지를 획득하도록 구현하였다. 또한 노출 시간을 기준으로 설계된 식을 수정하여 조리개값에 따라 다른 가중치를 둘 수 있도록 바꾸었고, 이를 통해 단 한 번의 촬영을 통한 HDR 이미징을 구현하였다.

Vision Based Motion Estimation Method using Ego-Exo Cameras (내부와 외부 카메라를 이용한 비전 기반 움직임 추정)

  • Uhm, Taeyoung;Jun, Ji-In;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.07a
    • /
    • pp.419-422
    • /
    • 2012
  • 최근, 인간과 컴퓨터 간의 상호작용을 위해 카메라의 정확한 포즈를 추정하고자 하는 연구가 많이 이루어지고 있다. 이러한 연구들은 인간의 움직임을 추적하기 위하여 카메라 영상으로부터 인간의 포즈를 추정하여 주된 인터랙션으로 활용하고자 한다. 그러나 기존의 움직임 추정 방법은 주로 내부(ego) 혹은 외부(exo)의 단일 카메라만을 이용하기 때문에 미세한 움직임을 분석하기 어렵다. 본 논문에서는 외부 카메라뿐만 아니라 내부 카메라를 혼합하여 사용함으로써 미세한 움직임도 추정할 수 있는 하이브리드 비전 기반 움직임 추정 방법을 제안한다. 실험 결과는 단일 카메라만을 이용한 결과와 비교해 더 정확한 포즈 추정을 보인다.

  • PDF

3D Depth Estimation by Using a Single Smart Phone Camera (단일 스마트폰 카메라를 이용한 3D 거리 추정 방법)

  • Bae, Chul Kyun;Ko, Young Min;Kim, Seung Gi;Kim, Dae Jin
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.240-243
    • /
    • 2018
  • 최근 VR(Virtual Reality)와 AR(Augmented Reality)의 발전에 따라 영상 또는 이미지에서 카메라와 물체 사이의 거리를 추정하는 기술에 대한 연구가 활발히 진행되고 있다. 본 논문에서는 카메라와 물체 사이의 거리 추정 방법 중에서 단일 카메라를 이용하여 촬영한 이미지의 흐림 정도를 분석하여 3D 거리를 추정하는 알고리즘을 연구한다. 특히 고가의 렌즈가 장착된 DSLR 카메라가 아닌 스마트폰 카메라 이미지에서 DFD를 이용한 거리 추정 방법 중 1개의 이미지를 이용한 3D 거리 추정 방법과 초점이 서로 다른 2개의 이미지를 결합하여 3D 거리를 추정하는 방법을 연구하고 최적회된 피사체 범위에 대해 연구하였다. 한 개의 이미지를 이용한 거리 추정에서는 카메라의 초점 거리를 200 mm로 설정할 때, 두 개의 이미지를 이용한 거리 추정에서는 두 이미지의 초점 거리를 각각 150 mm, 250 mm로 설정했을 때 가장 넓은 거리 추정 범위를 갖는다. 또한, 두 거리 추정 방법 모두 초점 거리가 가까울수록 가까운 물체의 거리 추정에 효율적인 것으로 나타났다.

  • PDF

Calibration Comparison of Single Camera and Stereo Camera (단일 카메라 캘리브레이션과 스테레오 카메라의 캘리브레이션의 비교)

  • Kim, Eui Myoung;Hong, Song Pyo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.4
    • /
    • pp.295-303
    • /
    • 2018
  • The stereo camera system has a fixed baseline and therefore has a constant scale. However, it is difficult to measure the actual three-dimensional coordinate since the scale is not fixed when relative orientation parameters are determined through the key-point matching in the stereo image each time. Therefore, the purpose of this study was to perform the stereo camera calibration that simultaneously determines the internal characteristics of the left and right cameras and the camera relationship between them using the modified collinearity equation and compared it with the two independent single cameras calibration. In the experiment using the images taken at close range, the RMSE (Root Mean Square Error) of ${\pm}0.014m$ was occurred when the three dimensional distances were compared in the single calibration results. On the other hand, the accuracy of the three-dimensional distance of the stereo camera calibration was better because the stereo camera results were almost no error compared to the results from two single cameras. In the comparison of the epipolar images, the RMSE of the stereo camera was 0.3 pixel more than that of the two single cameras, but the effect was not significant.

Stability Analysis of a Stereo-Camera for Close-range Photogrammetry (근거리 사진측량을 위한 스테레오 카메라의 안정성 분석)

  • Kim, Eui Myoung;Choi, In Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.3
    • /
    • pp.123-132
    • /
    • 2021
  • To determine 3D(three-dimensional) positions using a stereo-camera in close-range photogrammetry, camera calibration to determine not only the interior orientation parameters of each camera but also the relative orientation parameters between the cameras must be preceded. As time passes after performing camera calibration, in the case of non-metric cameras, the interior and relative orientation parameters may change due to internal instability or external factors. In this study, to evaluate the stability of the stereo-camera, not only the stability of two single cameras and a stereo-camera were analyzed, but also the three-dimensional position accuracy was evaluated using checkpoints. As a result of evaluating the stability of two single cameras through three camera calibration experiments over four months, the root mean square error was ±0.001mm, and the root mean square error of the stereo-camera was ±0.012mm ~ ±0.025mm, respectively. In addition, as the results of distance accuracy using the checkpoint were ±1mm, the interior and relative orientation parameters of the stereo-camera were considered stable over that period.

Study of Target Pose Estimation System: Distance Measurement Based Deep Learning Using Single Camera (딥러닝 단일카메라 거리 측정 기술 활용 구조대상자 위치추정시스템 연구)

  • Do-Yun Kim;Jong-In Choi ;Seo-Won Park ;Kwang-Young Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.560-561
    • /
    • 2023
  • 지진, 대형화재와 같은 많은 재해의 발생으로 인해 재난 안전 분야에 관심이 증가하고 있으며, 재난재해 시 신속하고 안전한 구조는 생존율에 영향을 준다. 기존 연구에서는 다양한 센서와 멀티카메라를 이용한 위치 추정 연구는 있으나, 가장 많이 설치된 단일카메라 기반의 위치 추정연구는 부족한 상태이다. 본 논문에서 단일카메라를 활용한 딥러닝 객체탐지와 거리측정 알고리즘을 이용하여 인명구조를 위한 구조대상자 위치추정시스템을 제안한다. 딥러닝을 활용한 객체탐지 기술을 이용하여 단일카메라 영상 내 객체와 해상도에 따른 바운딩 박스의 너비를 활용한 거리 계산식으로 거리를 추정하고, 객체의 위치좌표를 제공하여 신속한 재난 구조에 도움이 되는 시스템을 제안한다.

3D Reconstruction Algorithm with a Single Camera (단일 카메라에 의한 3차원 재건 알고리즘)

  • Lee, Hyo-Jong;Lee, Sang-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2000.10a
    • /
    • pp.719-722
    • /
    • 2000
  • 단일 카메라로 회전하는 물체의 영상을 획득한 후, 그 영상을 분석하여 3차원으로 복구하는 새로운 알고리즘을 제안한다. 제안하는 알고리즘은 물체의 회전과 단 하나의 카메라를 이용하는 방법이기에 기존의 스테레오 영상을 이용하는 방법에 비해 차이를 둘 수 있다. 회전하는 물체에는 회전축과 동일한 방향의 스캔라인을 형성시키고, 이 스캔라인을 적절한 측면에서 하나의 카메라를 이용해 영상으로 획득하여 스캔라인의 굴곡과 이 스캔라인에 인접한 화소의 컬러 정보를 이용하여 3차원의 물체를 재건한다. 이 방법은 3차원의 정보를 얻음에 있어 물체의 회전에 의존하기에 한 방향에서 얻어진 두 스테레오 영상의 정합과 각 방향에서 얻어진 영상을 정합 시킬 때 발생될 수 있는 스테레오 비전의 오류를 피할 수 있다.

  • PDF

딥 러닝 기반 다중 카메라 영상을 이용한 해상 장애물 탐지 추적에 관한 연구

  • 박정호;노명일;이혜원;조영민;손남선
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.186-186
    • /
    • 2022
  • 과거에는 선박을 운용하기 위해서 많은 인원이 필요하였으나 최근 들어 선박 운용에 필요한 인원이 줄어들고 있으며, 더 나아가 자율적으로 운항하는 선박을 만들기 위한 연구가 활발히 수행되고 있다. 자율 운항 선박을 구성하는 여러 요소 중 인간의 시각을 대체하기 위한 자율 인지 시스템은 가장 선행되어야 하는 연구 분야 중 하나이다. RADAR (RAdio Detection And Ranging) 및 AIS (Automatic Identification System) 등의 전통적인 인지 센서를 활용한 연구가 진행 중이지만 사각지대나 탐지 주기 등의 한계가 있다. 따라서 본 연구에서는 다중 카메라 (광학, 열상, 파노라마)를 이용하여 전통적인 인지 센서의 한계를 보완하는 새로운 인지 시스템을 고안하였으며, 이를 기반으로 해상 장애물을 추적하여 동적 운동 정보를 얻었다. 먼저 실해역에서 수집한 이미지를 바탕으로 해상 장애물 탐지를 위한 데이터를 구성하고, 딥 러닝 기반의 탐지 모델을 학습시켰다. 탐지 모델을 이용하여 탐지한 결과는 직접 설계한 칼만 필터 기반의 적응형 추적 필터를 통과시켜 해상 장애물의운동 정보 (궤적, 속력, 방향)를 계산하는데 활용되었다. 또한 본 연구는 카메라를 센서로 활용했을 때의 한계를 보완하기 위하여 동 시간대에 다중 카메라에서 추적한 각각의 정보를 융합하였다. 그 결과 단일 카메라를 활용하는 경우, RADAR의 오차 범위 이내에 추적 결과가 수렴하는 양상을 보였으며, 다중 카메라를 활용하는 경우에는 단일 카메라보다 정확한 추적이 가능함을 확인하였다.

  • PDF