This study presents a methodology to estimate two distinct fractal dimensions of natural river basin by using fractal tree concept. To this end, an analysis is performed on fractal features of a complete drainage network which consists of all possible drainage paths within a river basin based on the growth process of fractal tree. The growth process of fractal tree would occur only within the limited drainage paths possessing stream flow features in a river basin. In the case of small river basin, the bifurcation process of network is more sensitive to the growth step of fractal tree than the meandering process of stream segment, so that various bifurcation structures could be generated in a single network. Therefore, fractal dimension of network structure for small river basin should be estimated in the form of a range not a single figure. Furthermore, the network structures with fractal tree from this study might be more useful information than stream networks from a topographic or digital map for analysis of drainage structure on small river basin.
Kim, Hye-Jin;Ahn, Jae-Hwang;Choi, Chang-Won;Yi, Jae-Eung
Proceedings of the Korea Water Resources Association Conference
/
2010.05a
/
pp.67-71
/
2010
홍수기 다목적댐 운영의 목적은 홍수조절용량을 최대한 이용하여 하류 주요 지점의 첨두홍수량을 저감시키거나, 계획홍수량을 초과하지 않도록 방류량과 방류시점을 조절함으로써 홍수 피해규모를 최소화하는 것이다. 본 연구에서는 홍수기 다목적댐 운영에서 다목적 최적화의 한 형태인 goal programming의 적용성을 검토하였다. 실제 강우사상을 이용하여 단일저수지 운영과 저수지 연계운영을 실시하였다. 단일 저수지 운영을 적용하기 위한 시험유역으로는 충주댐 유역을 선정하였고 저수지 연계운영을 적용하기 위한 시험유역으로는 안동댐과 임하댐 유역을 선정하였다. goal programming의 결과 분석을 위해 저수지 모의운영 모형인 HEC-5 모형의 결과와 비교, 분석하였다. goal programming을 이용할 경우 HEC-5 운영결과보다 안정적인 운영결과를 얻을 수 있었다. goal programming을 이용한 최적화 운영의 경우 전구간의 유입량을 알고 있다는 점에서 실제 저수지 운영과는 차이가 있다. 그러나 적절한 제약조건을 적용하고 홍수예경보를 이용하여 예보된 유입량을 활용하면 최적의 방류시점과 방류량을 산정하여 홍수기 다목적댐을 효율적으로 운영할 수 있으며 주요 지점의 홍수량도 저감할 수 있을 것으로 판단된다.
Proceedings of the Korea Water Resources Association Conference
/
2020.06a
/
pp.382-382
/
2020
과거 많은 연구에서 다수의 모형의 결과를 이용한 앙상블 방법론은 인공지능 모형 (artificial neural network)의 예측 능력에 향상을 갖고 온다 논하였다. 본 연구에서는 미계측유역의 저수량(low flow)의 예측을 위하여 Jittering을 기반으로 한 인공지능 모형을 제시하고자 한다. 기본적인 방법론은 설명변수들에게 백색 잡음(white noise)를 삽입하여 훈련되는 자료를 증가시키는 것이다. Jittering을 기반으로 한 인공지능 모형에 대한 효과를 검증하기 위하여 본 연구에서는 Multi-output neural network model을 기반으로 모형을 구축하였다. 다음으로 Jittering을 기반으로 한 앙상블 모형을 variable importance measuring algorithm과 결합시켜서 유역특성치와 예측되는 저수량의 특성치들의 관계를 추론하였다. 본 연구에서 사용되는 방법론들의 효용성을 평가하기 위해서 미동북부에 위치하고 있는 총 207개의 유역을 사용하였다. 결과적으로 본 연구에서 제시한 Jittering을 기반으로 한 인공지능 앙상블 모형은 단일예측모형 (single modeling approach)을 정확도 측면에서 우수한 것으로 확인되었다. 또한, 적은 숫자의 앙상블 모형에서도 그 정확성이 단일예측모형보다 우수한 것을 확인하였다. 마지막으로 본 연구에서는 유역특성치들의 효과가 살펴보고자 하는 저수량의 특성치들에 따라서 일관적으로 영향을 미치거나 그 중요도가 변화하는 것을 확인하였다.
Proceedings of the Korea Water Resources Association Conference
/
2017.05a
/
pp.36-36
/
2017
일반적으로 유역의 지형학적 특성을 나타내는 인자들은 유역면적, 유로연장, 유로경사 등 여러가지가 있다. Horton (1945)은 수계의 발달 형태에 기초한 하천의 차수를 이용하여 분기비, 길이비, 면적비, 하천 밀도 등 지형학적인 매개변수로 제시하였다. 유역 지형학적 매개변수는 Horton이 제시한 유역내 하도망의 지형학적인 구성에 대한 특성을 반영하는 것으로 유출에 지배적인 영향을 미친다. 한강 유역 19개 하천의 27개 지점을 대상으로 유출 특성과 지형학적 특성의 상관 분석을 위하여 유역과 하천의 지형학적 특성을 Arc-Map을 이용하여 구하였다. 하천차수법칙에 의한 지형학적인 매개변수로 분기비, 길이비, 함몰도, 면적비를 산정하였고, 유역의 지형학적 인자는 유역면적, 유로연장, 유로경사, 형상계수, 단일형상계수, 세장률, 수계밀도, 수계빈도를 산정하였다. 수계의 연간 유출률은 실측 유출량과 강수량 자료를 이용하여 산정하였다. 각각의 지형학적 특성인자에 대한 상관 매트릭스를 분석하고 그 상관특성을 분석하였다. 특히 지형학적 매개변수와 지형학적 요소와 연간 유출률과의 상관관계식을 제시하였다.
Journal of the Korean Society of Hazard Mitigation
/
v.5
no.2
s.17
/
pp.17-28
/
2005
The objective of this study is to evaluate the critical duration between detention facility and flood control facility of small size catchment. 4 small size catchments are applied for hydrological analysis and rainfall excess is computed by using the NRCS Runoff Curve Number method. The critical duration of detention facility and flood control facility is evaluated using the concept of allowable release rate. The conclusions studied in this study are as follows; (1) The type of temporal pattern of design rainfall which causes maximum storage ratio has resulted in Huff's 2 quartile in case of the use of the concept of allowable release rate. (2) Based on (1) of conclusion, the critical durations of flood control facility are similar to those of detention facility, which is used for uncontrolled single detention pond.
Proceedings of the Korea Water Resources Association Conference
/
2021.06a
/
pp.181-181
/
2021
유역 내의 물순환 평가를 위하여 적합한 강우-유출모형을 선정하고 적용하는 것은 수문학적 관점에서 주된 과제이다. 장기적인 관점의 수자원 관리를 위해서는 직접적인 계측을 통해 장기간의 유출자료를 취득하는 방법이 있으나, 국내의 주요지점을 제외한 대다수의 중소규모의 지점에 계측기를 설치하는 것은 현실적으로 어려우므로, 자료취득이 비교적 용이하고 신뢰성이 높은 장기간 강우 자료를 강우-유출모형의 입력자료로 활용하여 미계측 유역으로의 모형을 확장하는 방안이 적절하다는 평가를 받고 있다. 본 연구는 국내외 주요 연속강우-유출모형의 특성을 파악하기 위하여 비교적 신뢰성 있는 자료를 보유하고 있는 소양강댐 유역에 다수의 연속강우-유출모형을 적용하였다. 모델링 결과로 산출된 유황곡선(flow duration curve)을 소양강댐 유입량과 비교하여 각 모형의 특징을 파악하고 유량에 따른 적합성 평가를 진행하였다. 또한, 향후 미계측유역으로 모형을 확장하기 위하여 매개변수 개수 및 재현능력을 동시에 평가하였다. 다수의 모형 중 적합성이 높은 모형들을 선별하였으며, 선별된 모형들의 불확실성을 고려함과 동시에 계층적 베이지안 기법을 활용하여 최종적으로 앙상블모형을 제시하였다. 앙상블모형을 단일 모형과 비교한 결과 단일 모형보다 개선된 성능을 확인하였다.
The objective of this study is to test the flood forecasting capability of TOPMODEL on a single watershed in Korea. The selected study area is the Soyang River basin with outlet at Soyang Dam site. The three daily hydrographs and the three hourly flood events during 1990~1996 are selected for model calibrations and performance tests. The model parameters are estimated on 1990 daily event by manual fitting technique and the effects of topographic index distribution to river flow simulations are investigated on the study area. The model performance on correlation coefficient between the observed and the simulated flows for the verification periods are above 0.77 on the 95-, 96-daily events, while above 0.87 for 90-, 95-, 96-hourly events. By the consideration of flood flow characteristics in Korea, the physical interpretation of the model concept, and the model performance, it can be concluded that the TOPMODEL is feasible as a flood forecasting model in Korea. Korea.
Rainfall-runoff prediction studies using deep learning while considering catchment attributes have been gaining attention. In this study, we selected two models: the Transformer model, which is suitable for large-scale data training through the self-attention mechanism, and the LSTM-based multi-state-vector sequence-to-sequence (LSTM-MSV-S2S) model with an encoder-decoder structure. These models were constructed to incorporate catchment attributes and predict the inflow of 10 multi-purpose dam watersheds in South Korea. The experimental design consisted of three training methods: Single-basin Training (ST), Pretraining (PT), and Pretraining-Finetuning (PT-FT). The input data for the models included 10 selected watershed attributes along with meteorological data. The inflow prediction performance was compared based on the training methods. The results showed that the Transformer model outperformed the LSTM-MSV-S2S model when using the PT and PT-FT methods, with the PT-FT method yielding the highest performance. The LSTM-MSV-S2S model showed better performance than the Transformer when using the ST method; however, it showed lower performance when using the PT and PT-FT methods. Additionally, the embedding layer activation vectors and raw catchment attributes were used to cluster watersheds and analyze whether the models learned the similarities between them. The Transformer model demonstrated improved performance among watersheds with similar activation vectors, proving that utilizing information from other pre-trained watersheds enhances the prediction performance. This study compared the suitable models and training methods for each multi-purpose dam and highlighted the necessity of constructing deep learning models using PT and PT-FT methods for domestic watersheds. Furthermore, the results confirmed that the Transformer model outperforms the LSTM-MSV-S2S model when applying PT and PT-FT methods.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.3
/
pp.104-118
/
2018
This study is to evaluate the accuracy improvement of the model using SWAT(Soil and Water Assessment Tool) model and multi - point hydrological observation data. The watershed is located in the Yongdam Dam($930.4km^2$), the Donghyang($165.5km^2$), the Chuncheon($290.9km^2$), the Juchun($57.8km^2$) and the Seokjeong($80.5km^2$). The watershed covers 70.0 % forest. In order to improve the accuracy of the model, precipitation data were used from two weather stations(Jangsu, Geumsan) and 16 AWS stations daily precipitation data(2003~2011) managed by KMA, MLIT, and K-water. Based on the reliable data of the Yongam test basin in 2003~2011, the runoff of single point (Yongdam dam) and multi-point (Donghyang, Chuncheon, Jucheon, Seokjeong). Simulation results show that the $R^2$ of the single subwatershed (Donghyang, Chuncheon, Jucheon, Seokjeong) is single point(0.84) and multipoint(0.88). For model efficiency coefficient of Nash-Sutcliffe at single point(0.45) and multipoint(0.70).
Journal of the Korean Association of Geographic Information Studies
/
v.7
no.4
/
pp.34-45
/
2004
Existing Semangeum's water balance analysis simplifies whole basin to single basin and achieved volume of effluence that produce by Kajiyama way to foundation. But Semangeum is complicated and various rice-wine strainer supply system. And there is difficulty to apply as elastic when water balance element is changed at free point. Divided to unit possession station for suitable water balance analysis model application to Semangeum in this study. And developed basin water balance model of GIS base that can do details analysis is bite about development and transfer of an appropriation in the budget of basin water resources. Achieved study including abstraction and concept design that use UML (unified modeling language) diagram for details analysis, stream network composition for rice-wine strainer supply system application, preprocessing of GIS base and postprocessing module development, model revision and verification etc. Support of this water balance analysis model is available to establish efficient water resources administration plan through outward flow process analysis of water resources. And support is considered to be possible in more convenient and, reasonable water resources administration way establishment by minimizing manual processing in systematic water resources government official to user and support diversified analysis system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.