• Title/Summary/Keyword: 단위 결합재양

Search Result 4, Processing Time 0.023 seconds

Evaluation of Self-Compaction Property of Section Enlargement Strengthening Concrete (단면확대 보강 적용을 위한 콘크리트의 자기충전 성능 평가)

  • Hwang, Yong-Ha;Yang, Keun-Hyeok;Song, Keum-Il;Song, Jin-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.235-242
    • /
    • 2019
  • The objective of this study is to modify the mixture proportions of concrete that were developed for section enlargement strengthening elements using a specially designed binder composed of 5% ultra-rapid hardening cement, 10% polymer, and 85% ordinary portland cement in order to assign the self-compaction property to such concrete. The self-compaction abilities of concrete were estimated by the performance criteria specified in JSCE and EFNARC provions. Test results showed that the increase in the unit binder content at the consistent water-to-bider ratio led to increase in viscosity of fresh concrete but did not exhibit the decrease in the fluidity due to a greater viscosity. The mixture proportioning of self-compaction section enlargement concrete could be considered at the following conditions: unit binder contents of $430kg/m^3{\sim}470kg/m^3$ and fine aggregate-to-total aggregate ratios of 40%~46% at the water-to-binder ratio of 38%.

Quality Characteristics and Environmental Impact Assessment of Alkali-Activated Foamed Concrete (알카리활성 기포콘크리트의 품질특성 및 환경영향 평가)

  • Yang, Keun-Hyeok;Yoo, Sung-Won;Lee, Hyun-Ho;Kim, Sang-Chel
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.2
    • /
    • pp.114-119
    • /
    • 2013
  • The present study tested 5 concrete mixes to develop reliable mixing proportions for the sustainable alkali-activated(AA) foamed concrete as a thermal insulation material for the floor heating system of buildings. The AA binder used was composed of 73.5% ground granulated blast-furnace slag, 15% fly ash, 5% calcium hydroxide, and 6.5% sodium silicate. As a main variable, the unit binder content varied from $325kg/m^3$ to $425kg/m^3$ at a space of $25kg/m^3$. The test results revealed that AA foamed concrete has considerable potential for practical applications when the unit binder content is close to $375kg/m^3$, which achieves the minimum quality requirements specified in KS F 4039 and ensures economic efficiency. In addition, lifecycle assessment demonstrated the reduction in the environmental impact profiles of all specimens relative to typical ordinary portland cement foamed concrete as follows: 99% for photochemical oxidation potential, 87~89% for global warming potential, 78~82% for abiotic depletion, and 70~75% for both acidification potential and human toxicity.

Foamed Concrete with a New Mixture Proportioning Method Comparable to the Quality of Conventional ALC Block (ALC 블록성능의 기포콘크리트 배합설계 연구)

  • Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study is to develop a high-performance foamed concrete made with a new mixture proportioning as an alternative of autoclaved lightweight concrete (ALC) block. For the early-strength gain of the foamed concrete under an atmospheric curing condition, the binders and chemical agents were specially contrived as follows: 3% anhydrous gypsum was added to ordinary portland cement (OPC) in which $3CaO{\cdot}SiO_2$ content was controlled to be above 60%; and the content of polyethylene glycol alkylether in a polycarboxylate-based water-reducing agent was modified to be 28%. Using these binders and chemical agents, 11 mixes were prepared with the parameters of W/B ratio (30% to 20% in a interval of 2.5%) and unit binder content ($400kg/m^3$ to $650kg/m^3$ in a interval of $50kg/m^3$). The quality and availability of the mixed foamed concrete were examined according to the minimum requirements specified in the KS for ALC block and existed conventional foamed concrete. The measured properties satisfied the minimum requirement of KS for ALC block and proved that the developed high-performance foamed concrete had considerable potential for practical application.

Effect of Ground Granulated Blast-Furnace Slag on Life-Cycle Environmental Impact of Concrete (고로슬래그가 콘크리트의 전 과정 환경영향에 미치는 효과)

  • Yang, Keun-Hyeok;Seo, Eun-A;Jung, Yeon-Back;Tae, Sung-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.13-21
    • /
    • 2014
  • To quantitatively evaluate the influence of ground granulated blast-furnace slag (GGBS) as a supplementary cementitious material on the life-cycle environmental impact of concrete, a comprehensive database including 3395 laboratory mixes and 1263 plant mixes was analyzed. The life-cycle assesment studied for the environmental impact of concrete can be summarized as follows: 1) the system boundary considered was from cradle to pre-construction; 2) Korea life-cycle inventories were primarily used to assess the environmental loads in each phase of materials, transportation and production of concrete; and 3) the environmental loads were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was significantly governed by the unit content of ordinary portland cement (OPC) and decreased with the increase of the replacement level of GGBS. As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and replacement level of GGBS.