• 제목/요약/키워드: 단위모델

검색결과 2,104건 처리시간 0.031초

문맥종속 반음소단의 모델을 이용한 자동 음소분할 및 레이블링 시스템의 구현 (The Implementation of Automatic Segmentation and Labelling System Using Context-dependent Demi-phone)

  • 김태환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.351.2-356
    • /
    • 1998
  • 음소 단위로 레이블링된 데이터베이스는 음성연구에 있어 매우 중요하다. 그러나 수작업에 의한 음소분할 및 레이블링 작업은 많은 시간과 노력이 필요하기 때문에 자동 음소분할 및 레이블링 시스템에 대한 많은 연구가 진행되고 있다. 본 논문에서는 monophone과 triphone의 장점을 포함하는 문맥 종속 반음소 단위 모델을 이용한 자동 음소분할 및 레이블링 시스템을 구현하였다. 레이블링 단위로는 68개의 유사음소와 묵음 등 총 69개로 정하였으며, 음소 모델링은 연속 HMM을 사용하였다. 기존의 subword 단위모델과 본 논문에서 제안한 문맥종속 반음소 모델을 이용한 자동 음소분할 및 레이블링 시스템의 성능 비교 음소경계오차가 10ms 이내인 경우 각각 60.17%, 66.32%를 포함하여 6.15%의 향상을 보이고, 40ms 이내인 경우 90.36%, 94.27%를 포함하여 3.92%의 성능향상을 보였다.

  • PDF

사용자 의도에 따른 행동 모델을 이용한 의도 인식 기법 (Intention-Awareness Method using Behavior Model Based User Intention)

  • 김건수;김동문;윤태복;이지형
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2007년도 추계학술대회 학술발표 논문집
    • /
    • pp.3-6
    • /
    • 2007
  • 사람들이 어떠한 행동을 할 때는 특정 의도를 가지고 있기 때문에 상황에 맞는 적합한 서비스를 제공하기 위해서는 사용자가 현재 하고 있는 행동에 대한 의도를 파악해야한다. 이를 위해 의도와 행동사이의 연관성을 이용하여 사용자의 의도에 따른 행동의 모델을 만든다. 일상생활에서 사람들이 하는 행동은 작은 단위 행동들의 연속(sequence)으로 이루어지므로, 사용자의 단위행동의 순서를 분석한다면 의도에 따른 행동 모델을 만들기가 용이해진다. 하지만, 이런 단위 행동 분석 방법의 문제점은 같은 의도를 가진 행동이 완벽하게 동일한 단위 행동의 순서로 일어나지는 않는다는 점이다. 시스템은 동일한 동작 순서로 일어나지 않는 행동들을 서로 다른 의도를 가진 행동으로 이해하게 된다. 따라서 이 문제점을 해결할 수 있는 사용자 의도 파악 기법이 필요하다. 본 논문에서는 과거의 사용자의 행동 정보를 기반으로 행동들의 유사성을 판별하였고, 그 결과를 이용하여 행동의 의도를 파악하는 방법을 사용한다. 이를 위해, 과거 사용자가 한 행동들을 단위 시간 별로 나누어 단위 행동의 순서로 만들고, 이를 K-평균 군집화 방법(K-means)으로 군집들의 순서로 나타내었다. 이 변경된 사용자 행동 정보를 사용하여 은닉 마코프 모델을 학습 시키고, 이렇게 만들어진 은닉 마코프 모델은 현재 사용자가 행한 행동이 어떤 행동인지를 예측하여 사용자의 의도를 파악한다.

  • PDF

문장음성인식을 위한 VCCV 기반의 언어모델과 Smoothing 기법 평가 (Language Model based on VCCV and Test of Smoothing Techniques for Sentence Speech Recognition)

  • 박선희;노용완;홍광석
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.241-246
    • /
    • 2004
  • 본 논문에서는 언어모델의 언어처리 단위로 VCCV(vowel consonant consonant vowel) 단위를 제안하구 기존의 언어처리 단위인 어적 형태소 단위와 비교한다. 어절과 형태소는 어휘수가 많고 높은 복잡도를 가진다. 그러나 VCCV 단위는 작은 사전과 제한된 어휘를 가지므로 복잡도가 적다. 언어모델 구성에 smoothing은 반드시 필요하다. smoothing 기법은 정확한 확률 예측이 불확실한 데이터가 있을 때 더 나은 확률 예측을 위해 사용된다. 본 논문에서는 형태소, 어절, VCCV 단위에 대해 언어모델을 구성하여 복잡도를 계산하였다. 그 결과 VCCV 단위의 복잡도가 형태소나 어절보다 적게 나오는 것을 볼 수 있었다. 복잡도가 적게 나온 VCCV를 기반으로 N-gram을 구성하고 Katz. Witten-Bell, absolute, modified Kneser-Ney smoothing 등의 방법을 이용한 언어 모델에 대해 평가하였다. 그 결과 VCCV 단위의 언어모델에 적합한 smoothing 기법은 modified Kneser-Ney 방법으로 평가되었다.

HM-Net을 이용한 한국어 유사음소 단위의 재 정의와 평가 (Definition and Evaluation of Korean Phone-Like Units using Hidden Markov Network)

  • 임영춘;오세진;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.183-186
    • /
    • 2002
  • 최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.

  • PDF

연결형 합성시스템을 위한 문맥종속 단위 기반의 비정형 합성단위 추출 알고리즘 (An algorithm of the Non-uniform synthesis unit selection for concatenative speech synthesis system)

  • 김영일
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 2호
    • /
    • pp.273.2-277
    • /
    • 1998
  • 본 논문에서는 음소단위 비정형 연결합성 시, 접합점에서 포만트 불연속을 최소화할 수 있도록 이웃음소간 경계강도 예측모델과 합성단위 검색시 음소단위 최장일치 검색 알고리즘을 설계하였다. 합성단위 연결부에서 발생하는 신호왜곡을 최소화하기 위해 “_C_”환경에서 자음이 유성음화된 경우, “_V_”환경에서 모음이 무성음화된 경우, 그리고 유성음 사이의 포만트 주파수 차이에 대한 모델을 생성하여, 음소간의 조음강도가 약한 부분이 합성단위 경계로 설정되도록 하였다. 합성단위 경계가 결정되면 주어진 문장의 문맥정보만을 이용하여 코포스로부터 후보를 선택한다. 선택된 후보를 사이의 연결성을 측정하기 위하여 합성 경계를 기준으로 전, 후 음소에 대한 음성적 특성과 포만트 천이 특성을 고려하였다. 실험은 K-ToBI 레이블링된 200문장을 기반으로 하였으며, 코퍼스로부터 한 문장을 선택하여 이를 목적치 패턴으로 선정 한 후, 목적치 패턴과 후보사이의 단위비용과 후보들 간의 연결비용을 계산하여 최적의 합성단위열을 추출하는 방식으로 이루어졌다. 본 논문에서는 이러한 문맥종속 단위 기반의 합성단위 추출 알고리즘과 실험 결과에 대해 보고한다.

  • PDF

FSN과 반음절쌍 모델을 이용한 연결 숫자음 인식의 성능 향상에 관한 연구 (A Study on Improvement of the Connected Digit Recognition Using Finite State Network and Demi-Syllable Pair Models)

  • 서은경;최태웅;김순협
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2003년도 추계학술발표대회(상)
    • /
    • pp.212-215
    • /
    • 2003
  • 본 논문에서는 숫자음과 단위음으로 구성된 한국어 연결 단위숫자음 인식의 성능 향상을 위하여 한국어 연결 단위숫자음의 특징을 분석하였다. 한국어의 단위숫자음은 숫자음 한음절과 단위음 한음절로 구성된 두음절의 연속적이고 반복적인 발성으로 나타난다. 숫자음에서의 인식 대상 어휘는 숫자음이라는 제한된 규칙을 갖는 가변 숫자음이다. 따라서 개수, 금액, 단위량, 거래량 등에서 나타날 수 있는 가변 숫자음을 인식하기 위하여 FSN(Finite State Network)을 구성하였다. 음향 모델은 한국어 숫자음과 같이 발성구간이 짧은 어휘의 연결음 (connected word)의 인식에서 효과적인 반음절쌍(demi-syllable pair) 모델을 이용하였다 실험결과, 화자 독립적인 가변 숫자음 60문장의 테스트 데이터에 대해서 문장 인식률 91.0%로 인식 성능을 향상시킬 수 있었다.

  • PDF

CM 알고리즘을 이용한 핵심어 검출 시스템의 인식률 향상에 관한 연구 (A Study on the Recognition-Rate Improvement by the Keyword Spotting System using CM Algorithm)

  • 원종문;이정숙;김순협
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2001년도 추계학술발표대회 논문집 제20권 2호
    • /
    • pp.81-84
    • /
    • 2001
  • 본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.

  • PDF

LSTM을 이용한 한국어 이미지 캡션 생성 (Generate Korean image captions using LSTM)

  • 박성재;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2017년도 제29회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.82-84
    • /
    • 2017
  • 본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.

  • PDF

3D 볼류메트릭 모델의 동적 복원 알고리즘 (Dynamic Reconstruction Algorithm of 3D Volumetric Models)

  • 박병서;김동욱;서영호
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.57-58
    • /
    • 2021
  • 우리는 한정된 공간에 분산하여 위치한 다수 개의 카메라들을 이용하여 생성된 실사 그래픽스 체적 모델 시퀀스 기반 동적 복원 알고리즘을 제안한다. 각 프레임 단위로 생성된 정적 모델의 시퀀스로부터 일정 시간 단위로 키 프레임을 생성한다. 키 프레임과 키 프레임 사이의 모델에 대한 리메싱(Remeshing) 처리를 수행하고 이를 통해 생성된 3D 모델과 키 프레임 사이 특징 점을 획득한다. 획득된 특징 점의 3차원 좌표들 사이의 오차를 최소화 하는 최적화 알고리즘(Solver)을 이용하여 키 프레임 모델과 리 매싱된 모델의 비 강체 정합을 모든 키 프레임 단위로 반복적으로 수행한다. 제안한 정합 방법을 이용하여 생성된 모델과 키 프레임 모델 사이 에러를 비교함으로써 결과를 검증한다.

  • PDF

국가발전을 위한 경영관리 지표개발

  • 김태호
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 추계학술대회
    • /
    • pp.27-35
    • /
    • 2001
  • 성공적인 지방자치단체 발전모델을 검토하고 국가경영관리라는 관점에서 각 지자제 단위단체들의 발전모델을 찾고자 한다 각 지역의 특성을 감안하여 핵심역량을 찾고 이를 통해 단위 우수 지방자치단체 모델을 전 국가적으로 확장하고자 한다. 국가발전을 위한 핵심경영관리 지표를 개발하여 한국 지방자치단체 및 발전적인 국가경영관리 모델을 제시하고자 한다

  • PDF