음소 단위로 레이블링된 데이터베이스는 음성연구에 있어 매우 중요하다. 그러나 수작업에 의한 음소분할 및 레이블링 작업은 많은 시간과 노력이 필요하기 때문에 자동 음소분할 및 레이블링 시스템에 대한 많은 연구가 진행되고 있다. 본 논문에서는 monophone과 triphone의 장점을 포함하는 문맥 종속 반음소 단위 모델을 이용한 자동 음소분할 및 레이블링 시스템을 구현하였다. 레이블링 단위로는 68개의 유사음소와 묵음 등 총 69개로 정하였으며, 음소 모델링은 연속 HMM을 사용하였다. 기존의 subword 단위모델과 본 논문에서 제안한 문맥종속 반음소 모델을 이용한 자동 음소분할 및 레이블링 시스템의 성능 비교 음소경계오차가 10ms 이내인 경우 각각 60.17%, 66.32%를 포함하여 6.15%의 향상을 보이고, 40ms 이내인 경우 90.36%, 94.27%를 포함하여 3.92%의 성능향상을 보였다.
사람들이 어떠한 행동을 할 때는 특정 의도를 가지고 있기 때문에 상황에 맞는 적합한 서비스를 제공하기 위해서는 사용자가 현재 하고 있는 행동에 대한 의도를 파악해야한다. 이를 위해 의도와 행동사이의 연관성을 이용하여 사용자의 의도에 따른 행동의 모델을 만든다. 일상생활에서 사람들이 하는 행동은 작은 단위 행동들의 연속(sequence)으로 이루어지므로, 사용자의 단위행동의 순서를 분석한다면 의도에 따른 행동 모델을 만들기가 용이해진다. 하지만, 이런 단위 행동 분석 방법의 문제점은 같은 의도를 가진 행동이 완벽하게 동일한 단위 행동의 순서로 일어나지는 않는다는 점이다. 시스템은 동일한 동작 순서로 일어나지 않는 행동들을 서로 다른 의도를 가진 행동으로 이해하게 된다. 따라서 이 문제점을 해결할 수 있는 사용자 의도 파악 기법이 필요하다. 본 논문에서는 과거의 사용자의 행동 정보를 기반으로 행동들의 유사성을 판별하였고, 그 결과를 이용하여 행동의 의도를 파악하는 방법을 사용한다. 이를 위해, 과거 사용자가 한 행동들을 단위 시간 별로 나누어 단위 행동의 순서로 만들고, 이를 K-평균 군집화 방법(K-means)으로 군집들의 순서로 나타내었다. 이 변경된 사용자 행동 정보를 사용하여 은닉 마코프 모델을 학습 시키고, 이렇게 만들어진 은닉 마코프 모델은 현재 사용자가 행한 행동이 어떤 행동인지를 예측하여 사용자의 의도를 파악한다.
본 논문에서는 언어모델의 언어처리 단위로 VCCV(vowel consonant consonant vowel) 단위를 제안하구 기존의 언어처리 단위인 어적 형태소 단위와 비교한다. 어절과 형태소는 어휘수가 많고 높은 복잡도를 가진다. 그러나 VCCV 단위는 작은 사전과 제한된 어휘를 가지므로 복잡도가 적다. 언어모델 구성에 smoothing은 반드시 필요하다. smoothing 기법은 정확한 확률 예측이 불확실한 데이터가 있을 때 더 나은 확률 예측을 위해 사용된다. 본 논문에서는 형태소, 어절, VCCV 단위에 대해 언어모델을 구성하여 복잡도를 계산하였다. 그 결과 VCCV 단위의 복잡도가 형태소나 어절보다 적게 나오는 것을 볼 수 있었다. 복잡도가 적게 나온 VCCV를 기반으로 N-gram을 구성하고 Katz. Witten-Bell, absolute, modified Kneser-Ney smoothing 등의 방법을 이용한 언어 모델에 대해 평가하였다. 그 결과 VCCV 단위의 언어모델에 적합한 smoothing 기법은 modified Kneser-Ney 방법으로 평가되었다.
최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.
본 논문에서는 음소단위 비정형 연결합성 시, 접합점에서 포만트 불연속을 최소화할 수 있도록 이웃음소간 경계강도 예측모델과 합성단위 검색시 음소단위 최장일치 검색 알고리즘을 설계하였다. 합성단위 연결부에서 발생하는 신호왜곡을 최소화하기 위해 “_C_”환경에서 자음이 유성음화된 경우, “_V_”환경에서 모음이 무성음화된 경우, 그리고 유성음 사이의 포만트 주파수 차이에 대한 모델을 생성하여, 음소간의 조음강도가 약한 부분이 합성단위 경계로 설정되도록 하였다. 합성단위 경계가 결정되면 주어진 문장의 문맥정보만을 이용하여 코포스로부터 후보를 선택한다. 선택된 후보를 사이의 연결성을 측정하기 위하여 합성 경계를 기준으로 전, 후 음소에 대한 음성적 특성과 포만트 천이 특성을 고려하였다. 실험은 K-ToBI 레이블링된 200문장을 기반으로 하였으며, 코퍼스로부터 한 문장을 선택하여 이를 목적치 패턴으로 선정 한 후, 목적치 패턴과 후보사이의 단위비용과 후보들 간의 연결비용을 계산하여 최적의 합성단위열을 추출하는 방식으로 이루어졌다. 본 논문에서는 이러한 문맥종속 단위 기반의 합성단위 추출 알고리즘과 실험 결과에 대해 보고한다.
본 논문에서는 숫자음과 단위음으로 구성된 한국어 연결 단위숫자음 인식의 성능 향상을 위하여 한국어 연결 단위숫자음의 특징을 분석하였다. 한국어의 단위숫자음은 숫자음 한음절과 단위음 한음절로 구성된 두음절의 연속적이고 반복적인 발성으로 나타난다. 숫자음에서의 인식 대상 어휘는 숫자음이라는 제한된 규칙을 갖는 가변 숫자음이다. 따라서 개수, 금액, 단위량, 거래량 등에서 나타날 수 있는 가변 숫자음을 인식하기 위하여 FSN(Finite State Network)을 구성하였다. 음향 모델은 한국어 숫자음과 같이 발성구간이 짧은 어휘의 연결음 (connected word)의 인식에서 효과적인 반음절쌍(demi-syllable pair) 모델을 이용하였다 실험결과, 화자 독립적인 가변 숫자음 60문장의 테스트 데이터에 대해서 문장 인식률 91.0%로 인식 성능을 향상시킬 수 있었다.
본 논문은 중규모 단어급의 핵심어 검출 시스템에서 인식률 향상을 위해 미등록어 거절(Out-of-Vocabulary rejection) 기능을 제어하기 위한 연구이다. 이것은 핵심어 검출기에서 인식된 결과를 확인하는 과정으로 검증시스템이 구현되기 위해서는 매 음소마다 검증 기능이 필요하고, 이를 위해서 반음소(anti-phoneme model) 모델을 사용하였다. 검증의 역할은 인식기에서 인식된 단어가 등록어인지 미등록어인지 판별하는 것이다. 단어인식기는 비터비 탐색을 하므로, 기본적으로 단어단위로 인식을 하지만 그 인식된 단어는 내부적으로 음소단위로 인식된다. 따라서, 최소 검증 오류를 갖는 반음소 모델을 사용하고, 이를 이용하여 인식된 음소 단위들을 각각의 반음소 모델과 비교하여 통계적인 방법에 의해 신뢰도를 구한다 이 음소단위의 신뢰도를 단어 단위의 신뢰도로 환산하기 위해서 음소단위를 평균 내는 방식 을 취한다. 이렇게 함으로서, 등록어와 미등록어 사이의 분별력을 크게 하여 향상된 인식 성능을 얻었다.
본 논문에서는 한국어 이미지 캡션을 학습하기 위한 데이터를 작성하고 딥러닝을 통해 예측하는 모델을 제안한다. 한국어 데이터 생성을 위해 MS COCO 영어 캡션을 번역하여 한국어로 변환하고 수정하였다. 이미지 캡션 생성을 위한 모델은 CNN을 이용하여 이미지를 512차원의 자질로 인코딩한다. 인코딩된 자질을 LSTM의 입력으로 사용하여 캡션을 생성하였다. 생성된 한국어 MS COCO 데이터에 대해 어절 단위, 형태소 단위, 의미형태소 단위 실험을 진행하였고 그 중 가장 높은 성능을 보인 형태소 단위 모델을 영어 모델과 비교하여 영어 모델과 비슷한 성능을 얻음을 증명하였다.
우리는 한정된 공간에 분산하여 위치한 다수 개의 카메라들을 이용하여 생성된 실사 그래픽스 체적 모델 시퀀스 기반 동적 복원 알고리즘을 제안한다. 각 프레임 단위로 생성된 정적 모델의 시퀀스로부터 일정 시간 단위로 키 프레임을 생성한다. 키 프레임과 키 프레임 사이의 모델에 대한 리메싱(Remeshing) 처리를 수행하고 이를 통해 생성된 3D 모델과 키 프레임 사이 특징 점을 획득한다. 획득된 특징 점의 3차원 좌표들 사이의 오차를 최소화 하는 최적화 알고리즘(Solver)을 이용하여 키 프레임 모델과 리 매싱된 모델의 비 강체 정합을 모든 키 프레임 단위로 반복적으로 수행한다. 제안한 정합 방법을 이용하여 생성된 모델과 키 프레임 모델 사이 에러를 비교함으로써 결과를 검증한다.
성공적인 지방자치단체 발전모델을 검토하고 국가경영관리라는 관점에서 각 지자제 단위단체들의 발전모델을 찾고자 한다 각 지역의 특성을 감안하여 핵심역량을 찾고 이를 통해 단위 우수 지방자치단체 모델을 전 국가적으로 확장하고자 한다. 국가발전을 위한 핵심경영관리 지표를 개발하여 한국 지방자치단체 및 발전적인 국가경영관리 모델을 제시하고자 한다
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.