• Title/Summary/Keyword: 단열의 방향성

Search Result 82, Processing Time 0.035 seconds

Identification of Conductive Fractures in Crystalline Recks (유동성 단열 파악을 위한 암반 내 단열특성 규명)

  • 채병곤;최영섭;이대하;김원영;이승구;김중렬
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.5 no.2
    • /
    • pp.88-100
    • /
    • 1998
  • Since fractures may serve as major conduits of groundwater flow in crystalline rocks, characterization of conductive fractures is especially important for interpretation of flow system. In this study, characterization of fractures to investigate hydraulically conductive fractures in gneisses at an abandoned mine area was performed. The orientation, width, length, movement sense, infilling materials, spacing, aperture, roughness of both joints and faults and intersection and connectivity to other joints were measured on outcrops. In addition, characteristics of subsurface fractures were examined by core logging in five boreholes, of which the orientations were acquired by acoustic televiewer logging from three boreholes. The dominant fracture sets were grouped from outcrops; GSet 1: N50-82$^{\circ}$E/55-90$^{\circ}$SE, GSet 2: N2-8$^{\circ}$E/56-86$^{\circ}$SE, GSet 3: N46-72$^{\circ}$W/60-85$^{\circ}$NE, GSet 4:Nl2-38$^{\circ}$W/15-40$^{\circ}$SW and from subsurface; HSet 1: N50-90$^{\circ}$E/55-90$^{\circ}$SE, HSet 2: N10-30$^{\circ}$E/50-70$^{\circ}$SE, HSet 3: N20-60$^{\circ}$W/50-80$^{\circ}$NE, HSet 4: N10-50$^{\circ}$E/$\leq$40$^{\circ}$NW. Among them, GSet 1, GSet 3 and HSet 1, HSet 3 are the most intensely developed fracture sets in the study area. The mean fracture spacings of HSet 1 are 30-47cm and code 1 fractures, such as faults and open fractures, comprise 21.0-42.9 percent of the whole fractures in each borehole. HSet 3 shows the mean fracture spacings of 55-57cm and the ratio of code 1 fractures is 15.4-26.9 percent. In spite of the mean fracture spacing of 239cm, code 1 fractures of HSet 4 have the highest ratio of 54.5 percent. From the fact that faults or open fractures have high hydraulic conductivity, it can be inferred that the three fracture sets of N55-85$^{\circ}$E/50-80$^{\circ}$SE, N20-60$^{\circ}$W/50-75$^{\circ}$NE and N10-30$^{\circ}$E/$\leq$30$^{\circ}$NW from a fracture system of relatively high conductivity. It is indirectly verified with geophysical loggings and constant injection tests performed in the boreholes.

  • PDF

다공성 세라믹소재의 단열 효과 및 단열소재 연구 현황

  • Song, In-Hyeok;Park, Yeong-Jo;Yun, Hui-Suk;Hwang, Gi-Yeong;Choe, Sang-Gyu
    • 기계와재료
    • /
    • v.22 no.4
    • /
    • pp.6-20
    • /
    • 2010
  • 현재 우리나라는 에너지 소비량의 97% 이상을 해외에 의존하고 있으며, 그 규모가 매년 증가하고 있는 실정이다. 이를 해소하기 위하여 다양한 시도가 이루어지고 있으며 이에 따른 관련 연구 분야의 정부 정책 지원도 증가하는 추세이다. 그러나 새로운 차세대 단열 소재의 개발을 통한 에너지 절감에 대한 노력은 아직 미흡한 상태이다. 본고에서는 이와 관련하여 에너지 효율 극대화 방안으로써, 기존의 단열 소재의 현황 및 향후 단열 소재의 연구방향을 다공질 세라믹(특히 에어로겔)을 중심으로 정리 기술함으로써 앞으로의 발전방향을 제시하고자 한다. 또한 이를 통하여 전체적인 다공성 무기질 단열 소재에 대한 이해를 높여 향후 친환경적이며, 에너지 효율적인 단열소재 연구 분야를 확립하는데 기여하고자 한다.

  • PDF

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

Geometric and Kinematic Characteristics of Fracture System in the Sancheong Anorthosite Complex, Korea (산청 회장암복합체 내 발달하는 단열계의 기하학적·운동학적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2016
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Sancheong anorthosite complex and the Jirisan metamorphic rock complex, the Mesozoic granitoids which intruded them. Several fracture sets with various geometric indicators, which determine their relative timing and shear sense, are well observed in the Sancheong anorthosite complex. The aim of this study is to determine the development sequence of extension fractures, the movement sense and development sequence of shear fractures in the Sancheong anorthosite complex on the basis of detailed analysis of their geometric indicators. This study suggests fracture system of the Sancheong anorthosite complex was formed at least through five different fracturing events, named as Dn to Post-Dn+3 phases. (1) Dn phase: extension fracturing event of NNW trend. The fracture set experienced the reactivations of dextral ${\rightarrow}$ sinistral shearing with the change of stress field afterward. (2) Dn+1 phase: extension fracturing event of (N)NE trend. The fracture set experienced the reactivations of sinistral ${\rightarrow}$ sinistral ${\rightarrow}$ dextral. (3) Dn+2 phase: extension fracturing event of NW trend. The fracture set experienced the activated of dextral shearing. (4) Dn+3 phase: extension fracturing event of N-S trend. (5) Post-Dn+3 phase: extension fracturing event of (E)NE trend. Dn deformation formed during the early Songnim orogeny. Dn+1 deformation formed during the late Songnim orogeny. Dn+2 deformation formed during the Daebo orogeny. Dn+3 deformation formed during the Bulguksa orogeny.

Characteristics of the Fracture Distribution on the Granitic Rock by DC and VLF-EM Survey in the Northern Part of Yusong (유성북부 화강암지역에서 전기비저항탐사와 극저주파 전자탐사를 이용한 단열분포 특성)

  • 조성현;김천수;송무영
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 1999
  • Groundwater flow in rock mass is controlled by the fractures developed in the area. So, the conductive fractures are very important for groundwater flow in crystalline rock. This study aims to find out the characteristics of the fracture distributed in granitic rock in the northern part of the Yusong area (latitude $36^{\circ}24'18"~36^{\circ}25'08",{\;}longitude{\;}127^{\circ}21'00"~127^{\circ}23'23"$). The electric and EM surveys were carried out in the site to delineate the fracture the fracture zones. Since geophysical survey provides non-unique solution, hydraulic data and dilling log data including BHTV scanning were used as complementary data to achieve the objective of this study. Electric survey(DC) arrays used are schlumberger and dipole-dipole arrays. VLF is used for EM survey. The main charcteristics of the fracture developed in the study aera are that fractures associated with basic dyke cut corss the main fracture zone in NNW and play an important role as hydraulic barrier. In trun, groundwater table in the upstream area is lower than that downstream area.

  • PDF

Hydraulic-Mechanical Modeling on Fracture Transmissivity Evolution Around a Borehole (시추공 주변 단열 투수도 진화에 대한 수리-역학 연동 모델링 평가)

  • Choi, Chae-Soon;Park, Kyung-Woo;Park, Byeong-Hak;Ko, Nak-Youl;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.55-66
    • /
    • 2021
  • Hydraulic-mechanical (H-M) coupled numerical modeling was used to evaluate the evolution of hydrogeological properties in response to the installation and expansion of a borehole. A domain with a discrete fracture network was adopted for discontinuum modeling to simulate changes in fracture apertures. Comparison with real hydraulic test data shows that the effects of principal stress direction and expansion of borehole diameter were reasonably simulated by H-M coupled numerical modeling. The modeling confirmed that aperture changes depended on the principal stress direction, with an increase in aperture size due to vertical displacement being the dominant effect. A concentration of shear dilation around the borehole had an additional, subsidiary, effect on the hydrogeological evolution. These results show that the permeability of fractured rock can be increased by changing the hydraulic properties of a fracture through stress redistribution caused by the installation and expansion of a borehole.

Characterization of Fracture Transmissivity for Groundwater Flow Assessment using DFN Modeling (분리단열망개념의 지하수유동해석을 위한 단열투수량계수의 정량화 연구)

  • 배대석;송무영;김천수;김경수;김증렬
    • The Journal of Engineering Geology
    • /
    • v.6 no.1
    • /
    • pp.1-13
    • /
    • 1996
  • The fracture transmissivity($T_f$) is the most important parameter of fracture in assessing groundwater flow in fractured rock masses by using the DFN(Discrete Fracture Network) modeling. $T_f$, the most sensitive parameter m DFN modeling, is dependent upon aperture, size and filling characteristics of each fracture set. In the field test, the accuracy of $T_f$ can be increased with Borehole Acoustic Scanning (Televiewer) and Fixed Interval Length(FIL) test in constant head. $T_f$ values measured from FIL test was modified and estimated by each fracture set on the basis of the Cubic Law and the information of aperture and filling characteristics obtained from Televiewer. The modified $T_f$ results in the increase of confidence and reliability of modeling results including the amount of tunnel inflow.And, this approach would reduce the uncertaintity of the assessment for groundwater flow in fractured rock masses using the DFN modeling.

  • PDF

Estimation of Conductivity Tensor of Fractured Rocks from Single-hole Packer test (단정 주입시험 결과를 이용한 단열암반의 수리전도도 분석)

  • 장근무;이은용;김창락;이찬구;김현주
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A three-dimensional discrete fracture network model based on probabilistic characteristics of fracture geometry and transmissivity was designed to calculate the conductivity tensor and to estimate theanisotropy of conductivity. The conductivities, $K_p$, obtained from the numerical simulation of single-holepacker test corresponded well to those from the field tests. From this, it can be concluded that thefracture network model designed in this study can represent hydraulic characteristics of in-situ fractured rock mass. Block-scale conductivities, $K_b$, estimated from the modelling of steady-state flow through the REV-scale block were ranged between the arithmetic mean and harmonic mean of theconductivity estimates from packer tests. The conductivity along north-south direction was 1.4 timesgreater than that along the east-west direction. It was concluded that the anisotropy of conductivitywas insignificant. It was also found that there was a little correlation between $K_b$ and $K_p$. This would be to that the conductivities from the packer test simulation was strongly dependent on thetransmissivity and the number of fractures within the packer test intervals.

  • PDF

Controlling Factors on the Development and Connectivity of Fracture Network: An Example from the Baekildo Fault in the Goheung Area (단열계의 발달 및 연결성 제어요소: 고흥지역 백일도단층의 예)

  • Park, Chae-Eun;Park, Seung-Ik
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.615-627
    • /
    • 2021
  • The Baekildo fault, a dextral strike-slip fault developed in Baekil Island, Goheung-gun, controls the distribution of tuffaceous sandstone and lapilli tuff and shows a complex fracture system around it. In this study, we examined the spatial variation in the geometry and connectivity of the fracture system by using circular sampling and topological analysis based on a detailed fracture trace map. As a result, both intensity and connectivity of the fracture system are higher in tuffaceous sandstone than in lapilli tuff. Furthermore, the degree of the orientation dispersion, intensity, and average length of fracture sets vary depending on the along-strike variation in structural position in the tuffaceous sandstone. Notably, curved fractures abutting the fault at a high angle occur at a fault bend. Based on the detailed observation and analyses of the fracture system, we conclude as follows: (1) the high intensity of the fracture system in the tuffaceous sandstone is caused by the higher content of brittle minerals such as quartz and feldspar. (2) the connectivity of the fracture system gets higher with the increase in the diversity and average length of the fracture sets. Finally, (3) the fault bend with geometric irregularity is interpreted to concentrate and disturb the local stress leading to the curved fractures abutting the fault at a high angle. This contribution will provide important insight into various geologic and structural factors that control the development of fracture systems around faults.

Distribution characteristics of geothermal anomalies related with direction of faults and lineaments (지열분포와 단층 및 선구조 방향성과의 상호연관성)

  • Baek, Seung-Gyun;Kim, Hyoung-Chan;Lee, Cheol-Woo;Park, Jeong-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.608-610
    • /
    • 2009
  • 지열 분포에 관련된 지질구조의 특성을 파악하기 위하여 지온경사, 지열류량 자료와 인접한 선구조의 방향성에 대한 상관성 분석을 실시하였다. GIS를 이용하여 지열정보데이터베이스에서 발췌한 209개 지온경사 자료와 218개 지열류량 자료에 대하여 전국 광역단열도로부터 가장 인접한 선구조를 추출하고 10도 간격의 방향별 지온경사 및 지열류량 자료 빈도 및 평균값을 그래프에 도시하였다. 인접 선구조의 방향별 지온경사 평균은 $N30^{\circ}{\sim}40^{\circ}W$, $N10^{\circ}{\sim}20^{\circ}E$ 방향에서 $58.9^{\circ}C/km$, $54.9^{\circ}C/km$로 가장 높았고, 인접 선구조의 방향별 지열류량 평균은 $N80^{\circ}{\sim}90^{\circ}W$, $N50^{\circ}{\sim}60^{\circ}W$ 방향에서 98.71 $mW/m^2$, $98.70mW/m^2$로 가장 높았다. 각 선구조 상의 좌표들을 이용하여 지열류량 분포도에서 지열류량 값을 추출한 결과 $N10^{\circ}W{\sim}N40^{\circ}E$, $N60^{\circ}{\sim}70^{\circ}W$, $N50^{\circ}{\sim}60^{\circ}E$ 방향의 지열류량 높은 것으로 나타났다. 결과적으로 지온경사와 지열류량 자료에 대한 인접 선구조의 방향은 북북동, 북서, 서북서 방향이 우세한 것으로 나타났다. 이는 우리나라 조구조 운동과 관련한 단층, 절리 등의 단열구조의 우세 방향과 잘 일치하는 것으로 해석된다.

  • PDF