• Title/Summary/Keyword: 단열압축

Search Result 161, Processing Time 0.02 seconds

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

Physical Properties and Quality Control of Foamed Concrete with Fly Ash for Cast-in-Site (플라이애쉬를 혼입한 현장타설 경량기포콘크리트의 물리적 특성 및 품질관리)

  • 이도헌;전명훈;고진수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.69-76
    • /
    • 2001
  • Foamed concrete for cast-in-site, which shows excellent lightweight, thermal insulation, noise insulation, constructability and cost efficiency, has been applied as thermal insulation or filling material for On-dol. However, the technology is too insufficient to obtain the high level of quality, and serious problems often occur in quality control at sites. It, thus, is necessary to establish the proper and reasonable quality control method for ensuring the required quality, based on the investigation on the physical properties and their reciprocal relation. This study aims to settle the quality control method in case of applying FA foamed concrete replacing 40% by weight with fly-ash as the filling material for On-dol. The results of the study include the correlation among flow, as-placed density and foam ratio of fresh foamed concrete, the correlation between physical properties before hardening and after 28-day, provision of an equation to estimate 28-day compressive strength early with 7-day compressive strength, and suggestion of quality criteria for the revision of KS on foamed concrete for cast-in-site.

Effect of Polyol Structure on the Physical Properties of Polyurethane Foam in Room and Cryogenic Temperature (폴리올 구조에 따른 폴리우레탄 폼의 상온과 초저온에서의 물성변화)

  • Kim, Sang-Bum;Kim, Chang-Bum
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.3
    • /
    • pp.21-25
    • /
    • 2010
  • An objective of this study is to develop a polyurethane foam(PUF) maintaining its mechanical strength at room temperature as well as at extremely low temperature. The effect of temperature on the physical properties of PUF with the increase in polyol functionality was investigated. At room and cryogenic temperature, compressive strengths of the PUFs increased up to 70% and 30% with an increase in polyol functionality, respectively. At room temperature tensile strength of PUFs tends to increase as functionality of polyol increases, however, the strength at $-190^{\circ}C$ shows different tendency. Compressive strength of PUF is higher in cryogenic temperature than in room temperature. However, as the number of polyol functionality become more than 4, tensile strength of PUF is lower in cryogenic temperature than in room temperature.

Study on the Quality Characteristics of High-strength Concrete Using LCD Industrial Waste (LCD 산업부산물을 이용한 고강도 콘크리트의 품질 특성에 관한 연구)

  • Kim, Dong-Jin;Park, Seung-Hee;Choi, Sung;Han, Yang-Su
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.650-657
    • /
    • 2021
  • Alkali activators that stimulate mineral compounds are expensive materials, but in order to replace industrial products of high alkali in gredien ts, both product an d econ omic feasibility must be satisfied. In this study, alkali in dustrial waste(LW) from the LCD man ufacturin g process were used for the purpose of alkali active reaction of GGBFS for high stren gth concrete over 50MPa. Concrete mixed with LW had reduced workability, but it had the characteristic of increasing compressive strength. Analysis using ACI 209 Compressive Strength Model Equation was made to compare the changes in strength coefficients according to LW mixing. The durability test of concrete, such as Chloride Penetration Resistance and carbonation resistance, also showed excellent performance. In the Adiabatic temperature rise test results, the concrete mixed with LW had the effect of accelerating the initial hydration heat. However, the final Adiabatic temperature rise was not significantly affected by the mixing of LW.

Properties of Adiabatic Temperature Rise of Concrete Using Different Types of Binder and Effects of Adiabatic Temperature on the Compressive Strength (결합재 종류에 따른 콘크리트의 단열온도상승특성 및 단열온도상승에 따른 압축강도특성에 관한 연구)

  • 하재담;김태홍;이종열;김진근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.527-532
    • /
    • 2001
  • The crack of concrete induced by a temperature rise in early age concrete due to the heat of ration of cement is a serious problem for massive or high strength concrete structures. However, re is still no reasonable equations for the prediction of the temperature rising. On this study, the prediction equations of the heat of hydration of different types of binder are pained from the adiabatic temperature rise test, and compared with the results from different nations to obtain the best approximated equation. The strengths of concrete of which specimens were placed in the same chamber for the adiabatic to were compared with those under standard curing.

  • PDF

Effect of Insulation Layer on Birefringence and Land-groove Pattern in DVD-RAM Substrate (단열층이 DVD 기판의 복굴절 및 전사성에 미치는 영향)

  • Kim, Y.;Seong, K.;Kang, S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.432-437
    • /
    • 2001
  • It is necessary to improve mechanical and optical porperties in the optical disk substrates as the information storage devices with high storage density using blue laser are being developed. Injection compression molding is regarded as the most suitable process to manufacture optical disk substrates for quality recording and read-out. In the present research, the effects of processing conditions and the insulation layer thickness on gapwise birefringence and the land-groove pattern were investigated. It was found that the values of the birefringence distribution were very sensitive to mold temperature history, and the level of birefringence reduced and, furthermore, the quality of replication was improved due to the insulation layer.

  • PDF

다중 효용관 기계식 증기 재압축 증발기설계

  • 박종기;김권일;김태환;김종휘;유윤종;조성철;성재석
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.115-115
    • /
    • 1995
  • 다중 효용관식 증발기는 보통의 증발기에서 응축하여 제거하는 증기를 다음 효용관의 가열원으로 재사용하는 것으로 그 자체로도 에너지 절감효과가 있는 것으로 알려져 있다[1,2,4]. 기계식증기 재압축 증발기는 보통 증발기에서 응축시켜 제거하는 발생 증기를 압축하여 고온의 증기로 만든 다음 가열원으로 재이용하는 장치로 이에 대한 효용은 문헌에 잘 나타나있다[3,4]. 여기서는 다중효용관과 증기 재압축기를 조합한 증발기 중에서 Forward feed 방식의 다중효응관에 증기 재압축기를 부착한 경우에 대하여 타당한 물질수지, 열수지, 전열 식, 상평형식을 소개하였다. 또한 압축기의 용량을 결정하기 위한 단열압축공정의 지배방정 식을 소개하였다. 원료의 조건, 효용관의 수 및 총전열온도차가 주어지면 상기의 지배방정식의 해를 구할 수 있는데. 본연구에서는 Gauss-Seidel의 연속치환법을 이용하였다. 이와 같이 지배방적식의 해를 구하면 효용관의 면적, 압축펌프의 용량, 각효용관 입출구의 조건 등이 계산된다. 다중효용관 기계식 증기 재압축 증발장치의 최적화를 위하여는 효용관의 전열면적당 가격과 압축펌프의 용량당 가격 그리고 펌프를 운전하는데 필요한 전력의 요금 등의 자료가 요구된다. 총전열온도차에 따른 운전비와 시설비의 합이 최소가 되는 점이 최적 총전열온도차가 되는데 이 점을 구할 때에는 수치적으로 안정한 이분법을 이용하였다. Borland C++를 이용하여 프로그램하였으며 윈도우즈 환경에서 수행되게 하였다. 사용자 쉽게 이용할 수 있게 하기 위하여 각종 필요한 데이터를 입력할 수 있는 Edit box가 화면에 나타나게 하였다. 또한 입력된 데이터를 저장하거나 불려올 수 있는 메뉴, 입력된 데이타를 이용하여 효용관의 면적과 압축기의 용량을 계산하거나 효용관의 수가 주어졌을 때 총전열온도차를 최적화하는 것을 선택할 수 있는 메뉴 그리고 계산 결과를 파일로 혹은 프린트로 출력할 것을 선택할 수 있는 메뉴가 있다. 사용자는 해당되는 데이타를 입력한후 마우스로 원하는 작업의 메뉴를 선택하면 된다.

  • PDF

Properties of quasi-noncombustible ultra-lightweight geopolymer (준불연 초경량 지오폴리머의 물성)

  • Kim, Yootaek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.3
    • /
    • pp.132-139
    • /
    • 2019
  • EPS (expanded polystyrene) is one of the most used building materials for insulation that is favored by its excellent heat insulation, economical efficiency and lightweight characteristics. However, EPS is vulnerable to the fire and producing large amount of toxic gases in case of fire. Therefore, ultra-lightweight geopolymer which can replace EPS is fabricated by using IGCC (integrated gasification combined cycle) fused slag and Si sludge as raw materials and the possibility of replacement on ultra-lightweight geopolymer for EPS as an insulation building material was evaluated in this study. Ultra-lightweight geopolymer can be fabricated with the pulverized IGCC fused slag having low carbon content and density, compressive strength, thermal conductivity were $0.064g/cm^3$, 0.04 MPa, and 0.072 W/mK, respectively. The thermal conductivity of ultra-lightweight geopolymer is 1.5~2.0 times higher than that of EPS suggested in the KS M 3808; however, the thermal conductivity value of geopolymer is meaningful and competitive to that of EPS in the market. Therefore, ultralightweight geopolymer can be applicable to the building material for thermal insulation purpose and have an enough possibility to replace EPS in the future because it is not only much safer than EPS in case of fire but also it can be fabricate by using waste materials from the industry.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.