• Title/Summary/Keyword: 단열벽온도

Search Result 26, Processing Time 0.022 seconds

Measurement of Adiabatic Wall Temperature on an Impinging Surface by Under-expanded Jet (과소팽창된 충돌제트에 의한 단열벽면 온도 측정)

  • Yu, Man-Sun;Lee, Jang-Woo;Kim, Byung-Gi;Cho, Hyung-Hee;Hwang, Ki-Young;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.79-84
    • /
    • 2005
  • An experimental investigation for impingement of under-expanded, axisymmetric jets on a flat plate has been conducted, and the surface pressure, the adiabatic wall temperature distributions on the plate have been measured in detail. For the explanation on the wall temperature distributions, the total temperature distributions along a free jet have also been measured with total temperature probes. In this study, the under-expansion ratio and the nozzle-to-plate distance have been considered as experimental parameters. Depending on nozzle-to-plate distances, different distributions of adiabatic wall temperature are shown by the energy separation at a jet edge and a impinged surface. Also, the recovery factor on a stagnation point decreases significantly due to the isolation of fluid particles in a central region.

Measurement of Adiabatic Wall Temperature in Compressible High Speed Impinging jets using Infra-red Camera (적외선 카메라를 이용한 압축성 고속 충돌 제트에서의 단열 벽면 온도 특성 연구)

  • Kim, Beom-Seok;Shin, Sang-Woo;Yu, Man-Sun;Cho, Hyung-Hee;Lee, Jang-Woo;Bae, Ju-Chan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.714-719
    • /
    • 2007
  • In this paper, we report experimental investigations on measurement of adiabatic wall temperature on a flat 2-D plate of high-speed impinging jet made by circular-shape nozzle at steady state condition using infra-red camera. Experiments have been conducted for the Reynolds number of 187,000 according to the change of nozzle-to-plate distance. Dimensionless number, recovery factor, has been used to represent the measured adiabatic wall temperature. And we compared the result obtained by using infra-red camera with that obtained by using thermocouple.

A Study on the Double-Wall Greenhouse Filled with Styrene Pellets (입자충전형 이중벽 온실에 관한 연구)

  • 이석건;이종원;이현우
    • Journal of Bio-Environment Control
    • /
    • v.4 no.1
    • /
    • pp.59-67
    • /
    • 1995
  • This study was conducted to develope the automatic insulation system which control inside temperature of the greenhouse. For this purpose, the double- wall greenhouse and system which could automatically supply and discharge styrene pellets were constructed and abrasion of the pellets, blower ability, insulating property, transmittance and shading effect were analyzed by the experiments. The results obtained from this study can be summarized as follows : 1. It took an hour and fifteen minutes to supply and discharge about 2㎥ pellets in the experimental greenhouse. However, it is possible to reduce the operation time by proper selection of the blower and exhaust port, and by proper control of the supply and return pipe. 2. It was founded that the indirect delivery way was more profitable than the direct one in the supply and return of pellets. 3. When the transmittance was measured between 10 a.m. and 3 p.m., the average light transmissivity rate was 67%. 4. In winter nighttime, the inside temperature of the double- wall greenhouse with out the pellets was higher than the outside temperature by 3.4$^{\circ}C$ on an average. However, the inside temperature of the double - wall greenhouse with insulated area 73% was higher than the outside by one 6.6$^{\circ}C$ on an average, and the inside temperature of the greenhouse with insulated area 100% was higher than outside one by 13.5$^{\circ}C$ on an average. Therefore, it was proved that the insulating ability of the double - wall greenhouse in nighttime was excellent. 5. When the outside temperature was 36.9$^{\circ}C$ on an average, the inside temperature of the double- wail greenhouse with insulated area 100% was 3$0^{\circ}C$ on an average. As the inside temperature was lower than the outside one by 7$^{\circ}C$ on an average, we could know that the shading effects of the double- wall greenhouse were excellent in summer daytime.

  • PDF

Total temperature investigation in free & wall jet regions (고속 자유/벽 제트 영역에서의 총온도 특성 고찰)

  • Jung Hyungab;Lee Jangwoo;Yu Mansun;Cho Hyunghee;Hwang Kiyoung;Bae Ju chan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.329-333
    • /
    • 2005
  • Total temperature distribution in high speed fee & wall jet regions was investigated using the total temperature probe. For the free jet, the distance of probe from the nozzle exit is changed in the range of 1, 2, 4 and 6 times o nozzle exit diameter. Energy separation phenomenon was observed on shear layer between jet and ambient. In wall jet region, impinging plate was fixed at Z/D=2 and total temperature distribution has been measured for various radial distance($R/D=1.25\sim2.0$). Energy separation phenomenon was found at wall jet boundary and near wall, and was compared with measured adiabatic wall temperature value.

  • PDF

Structure and Experimental Results of Automatic Insulation Greenhouse (자동단열온실의 구조 및 운전특성)

  • 이종원;이석건;이현우
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1994.05a
    • /
    • pp.88-91
    • /
    • 1994
  • 최근 국내에서도 시설원예가 급격하게 보급되고 있는 실정이다. 하지만, 시설원예가 에너지 소비형의 농경방식이라 지적되고 있는바 에너지절약형 온실의 개발이 필요할 것으로 판단되어, 본 실험실에서는 본 연구와 관련하여 비닐하우스의 벽체를 이중으로 하여 이중벽사이에 단열입자를 송풍기의 케이싱내로 직접 통하게하는 직송방식으로 충전ㆍ회수하는 실험을 실시한 바가 있으며, 그 결과 외기온의 평균이 -4.9$^{\circ}C$인 겨울철 야간에 입자를 충전한 이중비닐 하우스의 내부온도는 평균 9.8$^{\circ}C$로 단열성이 우수함을 알 수 있었다.(중략)

  • PDF

Analysis on Surface Temperature Control of an Insulated Vertical Wall Under Thermal Radiation Environment (단열재가 부착된 수직벽 표면의 온도제어 해석)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.323-329
    • /
    • 2012
  • In this study, a rational procedures for estimation of insulation thickness of a vertical wall for condensation control or personnel protection has been investigated. Design parameters are height of the wall, thermal conductivity, emissivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation for the purpose of surface temperature control, especially in natural convection situation. radiation heat transfer coefficients for some new insulation material surface, such as elastomers, estimated to be more than 90% of the total surface heat transfer coefficient.

Temperature Distribution of an Air-Cooled PCB Mounted with Finned and Finnless Modules (휜이 부착된 강제 공랭 모듈을 실장한 기판의 온도분포에 관한 연구)

  • Shin, D.J.;Park, S.H.;Lee, I.T.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.624-629
    • /
    • 2001
  • An experimental study was performed to investigate adiabatic wall temperature and heat transfer coefficient around on a module with longitudinal fin heat sink cooled by forced air flow. In the first method, inlet air flow(1-7m/s) and input power(3-5W) was varied after a heated module were placed on an adiabatic floor($320{\times}550{\times}1mm^{3}$). An adiabatic wall temperature was determinated to use liquid crystal film(LCF). In the second method to determinate heat transfer coefficient, inlet air flow(1-7m/s) and the heat flux of rubber heater($0.031-0.062\;W/cm^{2}$) was varied after an adiabatic module was placed on rubber heater covering up an adiabatic floor. In addition, surface oil-film visualization were performed to characterize the macroscopic flow-field around a module.

  • PDF

Fluid Flow and Temperature Distribution around a Surface-Mounted Module Cooled by Forced Air Flow in a Portable Personal Computers (휴대용 PC내에 실장된 강제공랭 모듈 주위의 유체유동과 온도분포)

  • Park S.H.;Shin D.J.;Lee I.T.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.729-732
    • /
    • 2002
  • This paper reports an experimental study around a module about forced air flow by blower($35{\times}35{\times}6mm^3$) in portable PC(10mm high, 200mm wide, and 235mm long). The channel inlet flow velocity has been varied between 0.26, 0.52 and 0.78m/s. The power input to the module is 4Wthis report, particular attention is directed to the fluid flow and adiabatic wall temperature($T_(ad)$) around a module which is under fluid mechanical and thermal influences of the module. The fluid flow around a module was visualized using PIV system. Liquid crystal thernography is used to determine the adiabatic wall temperature around a heated module on an acrylic board. Plots of $T_(ad)$ (or F) show marked effects of dispersion of thermal wake near the module.

  • PDF

Effect of Sectorial Angle on Natural Convection in Circular Trapezoidal Enclosures (부채형 밀폐 공간 내에서의 자연대류 열전달에 대한 공간각의 영향)

  • Bae, Tae-Yeol;Kwon, Sun-Suk
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.31-38
    • /
    • 1993
  • A numerical study of natural convection heat transfer confined by circular parallel walls at different temperatures and flat adiabatic walls is investigated for Rayleigh numbers from $10^3$ to $10^5$and sectorial angles from $30^{\circ}$ to $180^{\circ}$. It is used by a finite difference method to solve the governing equations. The results show velocity and temperature distributions. Mean Nusselt numbers are shown by $\overline{Nu}=C(Ra_L)^m$.

  • PDF

Heat transfer on a plain surface by the under-expanded impinging jet (과소팽창제트의 평판충돌에 의한 표면 열전달 특성)

  • 유만선;김병기;조형희;황기영;배주찬
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.27-31
    • /
    • 2003
  • An experimental investigation for impingement of under-expanded, axisymmetric jets on a flat plate has been conducted, and the surface pressure, the adiabatic wall temperature distributions on the plate have been measured in detail at small nozzle-to-plate distances. the pressure ratio and the nozzle-to-plate distance have been considered as experimental parameters.

  • PDF