• Title/Summary/Keyword: 단열(대)

Search Result 162, Processing Time 0.033 seconds

지하유류저장시설 주변의 단열암반 내 지하수유동체계 해석

  • Jo Seong-Il;Kim Cheon-Su;Bae Dae-Seok;Kim Gyeong-Su;Park Gyeong-U;Song Mu-Yeong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.292-295
    • /
    • 2005
  • 본 연구는 지하유류저장공동 굴착 시 비교적 정밀하게 해석된 단열체계 및 수리인자를 토대로 투수성구조영역과 수리암반영역으로 세분화하여 연구지역의 불규칙하고 복잡한 지하수유동체계를 해석해 보고자 하였다. FZ-2 구조대와 인접한 수리암반영역 Domain-A와 B는 Domain-C와 D에 비해 수평수벽공의 초기압이 최대 약 $15kg/cm^2$정도 높으며, 상 하부의 수리적 연결성이 양호하여 지하공동굴착 시 상 하부의 수위차가 크지 않고 지하수 함양량은 약 $35{\sim}50mm/year$의 범위를 보인다. 또한 공동굴착 시 투수성 단열과의 교차에 의한 수위강하에 민감한 반응을 보이며 상 하부의 수위강하양상이 유사한 특성을 나타낸다. 반면, FZ-1 구조대와 인접한 Domain-C와 D는 지하공동 부근의 수리전도도가 각각 $7{\times}10^{-10},\;2{\times}10^{-9}m/sec$로 Domain-A와 B에 비해 최대 약 6배정도 낮고, 상 하부의 수리적 연결성이 양호하지 않기 때문에 공동굴착 전 이중수위측정시설 설치 시 계측된 상 하부의 수위차는 최대 약 120 m로 매우 크다. 그리고 상부의 지하수는 하부의 낮은 수리전도도로 인하여 수직방향보다 수평방향으로의 유동이 우세하며 공동굴착 시 수위변화는 크지 않고 함양량은 $10{\sim}15mm/year$의 범위를 나타낸다.

  • PDF

Geological Structure of the Moisan Epithermal Au-Ag Mineralized Zone, Haenam and its Tectonic Environment at the Time of the Mineralization (해남 모이산 천열수 금-은 광호대의 지질구조와 광화작용 당시의 지구조환경)

  • Kang, Ji-Hoon;Lee, Deok-Seon;Ryoo, Chung-Ryul;Koh, Sang-Mo;Chi, Se-Jung
    • Economic and Environmental Geology
    • /
    • v.44 no.5
    • /
    • pp.413-431
    • /
    • 2011
  • An Epithemal Au-Ag mineralized zone is developed in the Moisan area of Hwangsan-myeon, Haenam-gun, Jeol-lanam-do, Korea, which is located in the southwestern part of the Ogcheon metamorphic zone. It is hosted in the Hwangsan volcaniclastics of the Haenam Formation of the Late Cretaceous Yucheon Group. This research investigated the characteristics of bedding arrangement, fold, fault, fracture system, quartz vein and the time-relationship of the fracture system to understand the geological structure related to the formation of the mineralized zone. On the basis of this result, the tectonic environment at the time of the mineralization was considered. Beds mainly trend east-northeast and gently dip into north-northwest or south-southeast. Their poles have been rearranged by subhorizontal-upright open fold of (east)-northeast trend as well as dip-slip fault. Fracture system was formed through at least 6~7 different deformation events. D1 event; formation phase of the main fracture set of EW (D1-1) and NS (D1-2) trends with a good extensity, D2 event; that of the extension fracture of NW trend, and conjugate shear fracturing of the EW (dextral) and NS (sinistral) trends, D3 event; that of the extension fracture of NE trend, and conjugate shear refracturing of the EW (sinistral) and NS (dextral) trends, D4 event; that of the extension fracture of NS trend showing a poor extensity, D5 event; that of the extension fracture of NW trend, and conjugate shear refracturing of the EW (dextral) and NS (sinistral) trends, D6 event; that of the extension fracture of EW trend showing a poor extensity. Frequency distribution of fracture sets of each deformation event is D1-1 (19.73 %)> D1-2 (16.44 %)> D3=D5 (14.79 %)> D2 (13.70 %)> D4 (12.33 %)> D6 (8.22 %) in descending order. The average number of fracture sets within 1 meter at each deformation event is D6 (5.00)> D5 = D4 (4.67)> D2 (4.60)> D3 (4.13)> D1-1 (3.33)> D1-2 (2.83) in descending order. The average density of all fractures shows 4.20 fractures/1 m, that is, the average spacing of all fractures is more than 23.8 cm. The frequency distribution of quartz veins at each orientation is as follows: EW (52 %)> NW (28 %)> NS (12 %)> NE (8 %) trends in descending order. The average density of all quartz veins shows 4.14 veins/1 m, that is, the average spacing of all quartz veins is more than 24.2 cm. Microstructural data on the quartz veins indicate that the epithermal Au-Ag mineralization (ca. 77.9~73.1 Ma) in the Moisan area seems to occur mainly along the existing D1 fracture sets of EW and NS trends with a good extensity not under tectonic stress but non-deformational environment directly after epithermal rupture fracturing. The D1 fracturing is considered to occur under the unstable tectonic environment which alternates compression and tension of NS trend due to the oblique northward subduction of the Izanagi plate resulting in the igneous activity and deformation of the Yucheon Group and the Bulguksa igneous rocks during Late Cretaceous time.

Geometric and Kinematic Characteristics of Fracture System in the Sancheong Anorthosite Complex, Korea (산청 회장암복합체 내 발달하는 단열계의 기하학적·운동학적 특성)

  • Lee, Deok-Seon;Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.389-400
    • /
    • 2016
  • The study area, which is located in the southeastern part of the Jirisan province of the Yeongnam massif, Korea, consists mainly of the Precambrian Sancheong anorthosite complex and the Jirisan metamorphic rock complex, the Mesozoic granitoids which intruded them. Several fracture sets with various geometric indicators, which determine their relative timing and shear sense, are well observed in the Sancheong anorthosite complex. The aim of this study is to determine the development sequence of extension fractures, the movement sense and development sequence of shear fractures in the Sancheong anorthosite complex on the basis of detailed analysis of their geometric indicators. This study suggests fracture system of the Sancheong anorthosite complex was formed at least through five different fracturing events, named as Dn to Post-Dn+3 phases. (1) Dn phase: extension fracturing event of NNW trend. The fracture set experienced the reactivations of dextral ${\rightarrow}$ sinistral shearing with the change of stress field afterward. (2) Dn+1 phase: extension fracturing event of (N)NE trend. The fracture set experienced the reactivations of sinistral ${\rightarrow}$ sinistral ${\rightarrow}$ dextral. (3) Dn+2 phase: extension fracturing event of NW trend. The fracture set experienced the activated of dextral shearing. (4) Dn+3 phase: extension fracturing event of N-S trend. (5) Post-Dn+3 phase: extension fracturing event of (E)NE trend. Dn deformation formed during the early Songnim orogeny. Dn+1 deformation formed during the late Songnim orogeny. Dn+2 deformation formed during the Daebo orogeny. Dn+3 deformation formed during the Bulguksa orogeny.

Fracture Developing History and Density Analysis based on Grid-mapping in Bonggil-ri, Gyeongju, SE Korea (경주시 봉길리 지역의 단열발달사 및 단열밀도 해석)

  • Jin, Kwang-Min;Kim, Young-Seog
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.455-469
    • /
    • 2007
  • The study area, Bonggil-ri, Gyeongju, SE Korea, is composed of Cretaceous sedimentary rocks, and Tertiary igneous rocks and dykes. A research on fracture developing history and density distribution was carried out on well exposed Tertiary granites. The fractures developed in this area have the following sequence; NW-SE trending duo-tile shear bands (set a), NNW-SSE trending extensional fractures (set d), WNW-ESE trending extensional or normal fractures (set b), NE-SW trending right-lateral fractures (set c), WNW-ESE trending reverse fault reactivated from normal faults (set e) and NW-SE trending left-lateral faults reactivated from shear bands (set a) under brittle condition. According to the result of fracture density analysis, the fracture density in this area depends on rock property rather than rock age, and also higher fracture density is observed around fault damage zones. However, this high fracture density may also be related to the cooling process associated with dyke intrusion as well as rock types and fault movement. Regardless of the reason of the high fracture density, high fracture density itself contributes to fluid flow and migration of chemical elements.

Numerical Simulation of Groundwater Flow in Feterogenetic Rockmass of Unsaturated Condition (암반의 불균질성을 고려한 불포화대 지하수 유동 평가)

  • Ha, Jaechul;Lee, Jeong Hwan;Cheong, Jae-yeol;Jung, Haeryong
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.87-99
    • /
    • 2016
  • We present the results of two-dimensional numerical simulations predicting the flow of groundwater in a fractured unsaturated zone. We applied the k-field distribution of permeability derived from discrete fracture network (DFN) modeling as the hydraulic properties of a model domain. To model an unsaturated zone, we set the depth from the ground surface to the underground aquifer. The rate of water infiltration into the unsaturated zone was divided into two parts, an artificial structure surface and unsaturated soil zone. The movement of groundwater through the unsaturated zone was simulated with particular emphasis on contaminant transport. It was clearly observed that the contaminants dissolved in groundwater transported vertically from the ground surface to the saturated zone.

Discontinuous Fracture Characteristics and Fractal Dimensions of Groundwater Flow Section in Youngchun Waterway Tunnel (영천댐 도수로터널내 지하수 유출구간의 불연속성 단열 특성 및 단열 프랙탈 차원)

  • 이병대;추창오;이인호;정교철;함세영;조병욱
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.333-344
    • /
    • 2002
  • To clarify the relationship between groundwater flow tate and statistical distribution of fractures in Youngchun waterway tunnel, the fracture characteristics and fractal dimensions of groundwater flow section were evaluated. The flow rate of 84,465m$^3$/day was identified in fault, accounting for about 70 percent of the total How rate. The flow rate of 36,525m$^3$/day was identified in joint, accounting for about 30 percent of the total flow rate. The flow late in the NATM section of sedimentary rocks increased with the fractal dimensions. The fractal dimensions determined in fault or fracture zones show more positive relation with the flow rate than those in joint developed zones.

Identification of the Transmissive Fractures in the Vicinity of waterway Tunnel (도수로터널 주변 지역의 지하수 유동성 단열 규명)

  • 이병대;이인호;추창오;함세영;성익환;황세호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • A field technique for assessing the transmissive fractures in an aquifer was applied to a fractured rock formation in Youngchun area Korea. Geological mapping and detailed acoustic borehole teleview(BHTV) logging were performed to obtain information about the fractures. The study area consists predominantly of two types of fractures. The fracture sets of low angle partings such as bedding and sheeting plains have strike N70-80$^{\circ}$W, 25$^{\circ}$-30$^{\circ}$SW and N3S$^{\circ}$W, 12$^{\circ}$NE, respectively. In areas of high fractures, on the other hand, the major fracture sets show strike N80$^{\circ}$W and dip 70$^{\circ}$-85$^{\circ}$SW, N10$^{\circ}$E.85$^{\circ}$SE in sedimentry rocks, N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE, N70$^{\circ}$E.80$^{\circ}$SE, and N7$^{\circ}$-75$^{\circ}$W.80$^{\circ}$SW in granites and volcanic rocks. Injection tests have been performed to identify discrete production zones and quantify the vertical distribution of hydraulic conductivity. The calculated hydraulic conductivities range from 3.363E-10 to 2.731E-6, showing that the difference between maximum and minimum value is four order of magnitude. Dominant section in hydraulic conductivity is extensively fractured. Geophysical logging was carried out to clarify characterization of the distribution of fracture zones. Transmissive fractures were evaluated through the comparison of the results obtained by each method. The temperature logs appeared to be a good indicator that can distinguish a high transmissive fractures from a common fractures in hydraulic conductivity. In numerous cases, evidence of fluid movement was amplified in the temperature gradient log. The fracture sets of N70-80$^{\circ}$W.60-85$^{\circ}$NE/SW N75-80$^{\circ}$W.25-30$^{\circ}$SW, N50-64$^{\circ}$W.60-85$^{\circ}$NE, N35-45$^{\circ}$E.65-75$^{\circ}$SE, and N65-72$^{\circ}$E.80$^{\circ}$SE/60$^{\circ}$NW were idenfied as a distinct transmissive fractures through the results of each tests.

Construction of Hydrogeological Model for KURT Site Based on Geological Model (KURT 연구지역에서 지질모델을 이용한 수리지질모델의 구축)

  • Park, Kyung-Woo;Ko, Nak-Yeol;Ji, Sung-Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.121-130
    • /
    • 2018
  • The KURT (KAERI Underground Research Tunnel) is a research tunnel which is located in KAERI (Korea Atomic Energy Research Institute) site. At KURT, researches on engineering and natural barrier system, which are the most important components for geological disposal system for high level radioactive waste, have been conducted. In this study, we synthesized the site characteristics obtained by various types of site investigation to introduce the geological model for KURT site, and induced the 3-D hydrogeological model for KURT site from the geological model. From the geological investigation at the surface and boreholes, four geological elements such as subsurface weathered zone, upper fractured rock, lower fractured rock and fracture zones were determined for the geological model. In addition, the geometries of these geological elements were also analyzed for the geological model to be three-dimensional. The results from 3-D geological model were used to construct the hydro-geological model for KURT site, which is one of the input data for groundwater flow modeling and safety assessment.

The Study on the Confidence Building for Evaluation Methods of a Fracture System and Its Hydraulic Conductivity (단열체계 및 수리전도도의 해석신뢰도 향상을 위한 평가방법 연구)

  • Cho Sung-Il;Kim Chun-Soo;Bae Dae-Seok;Kim Kyung-Su;Song Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.15 no.2 s.42
    • /
    • pp.213-227
    • /
    • 2005
  • This study aims to assess the problems with investigation method and to suggest the complementary solutions by comparing the predicted data from surface investigation with the outcome data from underground cavern. In the study area, one(NE-1) of 6 fracture zones predicted during the surface investigation was only confirmed in underground caverns. Therefore, it is necessary to improve the confidence level for prediction. In this study, the fracture classification criteria was quantitatively suggested on the basis of the BHTV images of NE-1 fracture zone. The major orientation of background fractures in rock mass was changed at the depth of the storage cavern, the length and intensity were decreased. These characteristics result in the deviation of predieted predicted fracture properties and generate the investigation bias depending on the bore hole directions and investigated scales. The evaluation of hydraulic connectivity in the surface investigation stage needs to be analyze by the groundwater pressures and hydrochemical properties from the monitoring bore hole(s) equipped with a double completion or multi-packer system during the test bore hole is pumping or injecting. The hydraulic conductivities in geometric mean measured in the underground caverns are 2-3 times lower than those from the surface and furthermore the horizontal hydraulic conductivity in geometric mean is six times lower than the vertical one. To improve confidence level of the hydraulic conductivity, the orientation of test hole should be considered during the analysis of the hydraulic conductivity and the methodology of hydro-testing and interpretation should be based on the characteristics of rock mass and investigation purposes.