• 제목/요약/키워드: 단어 의미 정보

검색결과 606건 처리시간 0.025초

감성 커뮤니케이션을 위한 오픈사전 앱 개발 (Development of Open Dictionary for Emotional Communication)

  • 조훈기;이건훈;최영완;김지심;김경아;안유정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2019년도 제59차 동계학술대회논문집 27권1호
    • /
    • pp.289-290
    • /
    • 2019
  • 사람들의 대화에 사용되는 단어는 사전적으로 정의되어 있으나 개인마다 단어의 의미를 다르게 받아들이기도 한다. 단어에는 단순히 사전의 정의만 담겨 있는 것이 아니라 개인의 감정과 삶의 시간 또한 담겨 있기 때문이다. 각기 다른 의미로 단어를 사용함에 따라 야기되는 소통 장애를 해소하기 위하여 본 연구에서는 단어의 일반적 정의뿐 아니라 개개인 각자의 의미를 담을 수 있는 오픈사전 앱을 개발하였다. 일반사전에서는 공공 API를 통해 국립국어원의 우리말샘 사전을 사용하며, 오픈사전에서는 웹서버를 연동하여 MySQL에 사용자가 정의한 단어를 등록한다. 또한 본 앱에서는 해상도별 이미지를 구현하여 다양한 화면에 대응하였다.

  • PDF

의미 중의성을 고려한 온톨로지 기반 메타데이타의 자동 생성 (Ontology-based Automated Metadata Generation Considering Semantic Ambiguity)

  • 최정화;박영택
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권11호
    • /
    • pp.986-998
    • /
    • 2006
  • 인터넷의 발전으로 방대해진 정보를 컴퓨터가 이해하고 효율적으로 관리하기 위해서는 시맨틱 웹 기반의 메타데이타가 반드시 필요하다. 그러나 메타데이타 생성 시 의미 중의성을 가진 정보가 존재하며 이 문제의 해결책이 필요하다. 본 논문에서는 순차적으로 존재할 수 있는 단어들의 확률 모델을 이용하여 문서와 같은 정보에 포함된 의미가 애매한 단어를 관련성이 높은 모델의 개념으로 메타데이타를 생성하는 방법을 제안한다. 제안한 방법에서 메타데이타를 생성 할 때, 온톨로지에 정의된 개념들 간의 중의성을 고려하고 명칭(named entity)의 일부 단어에 대한 인식을 위해 은닉 마르코프 모델(Hidden Markov Model)을 사용한다. 먼저 온톨로지에 정의된 각 클래스(class)의 인스턴스(instance)를 인식하기 위한 마르코프 모델을 생성한다. 다음으로 문서로부터 의미가 애매한 단어의 의미를 파악할 수 있는 상황정보(Context)를 생성하고, 상황정보에 포함된 단어들의 순서에 대응하는 최적의 마르코프 모델을 찾아 메타데이타 생성시의 중의성 문제를 해결한다. 제안한 방법으로 전산학관련 논문에 대해 의미가 애매한 7개의 단어를 추출하여 실험하였다. 그 결과 상황정보에 존재하는 개체(entity)의 의미부류들 중 가장 빈번한 의미 부류로 애매한 단어의 의미를 선정한 SemTag보다 정확도 면에서 38%정도의 나은 성능을 나타내었다.

잠재 의미 색인 기법을 이용한 국제 특허 분류 (International Patent Classificaton Using Latent Semantic Indexing)

  • 진훈태
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1294-1297
    • /
    • 2013
  • 본 논문은 기계학습을 통하여 특허문서를 국제 특허 분류(IPC) 기준에 따라 자동으로 분류하는 시스템에 관한 연구로 잠재 의미 색인 기법을 이용하여 분류의 성능을 높일 수 있는 방법을 제안하기 위한 연구이다. 종래 특허문서에 관한 IPC 자동 분류에 관한 연구가 단어 매칭 방식의 색인 기법에 의존해서 이루어진바가 있으나, 현대 기술용어의 발생 속도와 다양성 등을 고려할 때 특허문서들 간의 관련성을 분석하는데 있어서는 단어 자체의 빈도 보다는 용어의 개념에 의한 접근이 보다 효과적일 것이라 판단하여 잠재 의미 색인(LSI) 기법에 의한 분류에 관한 연구를 하게 된 것이다. 실험은 단어 매칭 방식의 색인 기법의 대표적인 자질선택 방법인 정보획득량(IG)과 카이제곱 통계량(CHI)을 이용했을 때의 성능과 잠재 의미 색인 방법을 이용했을 때의 성능을 SVM, kNN 및 Naive Bayes 분류기를 사용하여 분석하고, 그중 가장 성능이 우수하게 나오는 SVM을 사용하여 잠재 의미 색인에서 명사가 해당 용어의 개념적 의미 구조를 구축하는데 기여하는 정도가 어느 정도인지 평가함과 아울러, LSI 기법 이용시 최적의 성능을 나타내는 특이값의 범위를 실험을 통해 비교 분석 하였다. 분석결과 LSI 기법이 단어 매칭 기법(IG, CHI)에 비해 우수한 성능을 보였으며, SVM, Naive Bayes 분류기는 단어 매칭 기법에서는 비슷한 수준을 보였으나, LSI 기법에서는 SVM의 성능이 월등이 우수한 것으로 나왔다. 또한, SVM은 LSI 기법에서 약 3%의 성능 향상을 보였지만 Naive Bayes는 오히려 20%의 성능 저하를 보였다. LSI 기법에서 명사가 잠재적 의미 구조에 미치는 영향은 모든 단어들을 내용어로 한 경우 보다 약 10% 더 향상된 결과를 보여주었고, 특이값의 범위에 따른 성능 분석에 있어서는 30% 수준에 Rank 되는 범위에서 가장 높은 성능의 결과가 나왔다.

상위어 시퀀스의 클러스터링을 이용한 단어의 의미 애매성 해소 (Word Sense Disambiguation using Hypernym Sequence Clustering)

  • 정창후;최윤수;최성필;윤화묵
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.935-936
    • /
    • 2009
  • 본 논문에서는 과학기술문서에 존재하는 기술용어와 이들 간의 연관관계를 설명하는 디스크립터를 찾아서 [subject predicate object] 형태의 트리플을 생성하는 애플리케이션을 개발할 때 발생하는 단어 의미 애매성 해소 문제를 다룬다. 기술용어가 가지고 있는 연관관계를 결정하기 위해서 워드넷의 신셋 정보를 사용하는데 이 방법은 동사를 워드넷에 매핑할 때와 상위어 관계로 전이할 때 여러 개의 의미에 매핑되는 문제점이 발생한다. 이것을 해결하기 위해서 상위어 시퀀스 클러스터링을 이용한 단어의 의미 애매성 해결 방안을 제시한다. 이 방법을 사용함으로써 워드넷 매핑과 상위어 전이 시에 발생하는 다중 매핑 문제를 동시에 해결할 수 있다.

어휘의미분석 말뭉치 구축의 절차와 문제 (Procedures and Problems in Compiling a Disambiguated Tagged Corpus)

  • 신지현;최민우;강범모
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.479-486
    • /
    • 2001
  • 동음이의어 간의 서로 다른 의미를 효율적으로 변별해 줄 수 있는 방법 중 하나로 어휘의미분석 말뭉치의 활용을 들 수 있다. 이는 품사 단위의 중의성을 해소해 줄 수 있는 형태소 분석 말뭉치를 기반으로, 이 단계에서 해결하지 못하는 어휘적인 중의성을 해결한 것으로, 보다 정밀한 언어학적 연구와 단어 의미의 중의성 해결(word sense disambiguation) 등 자연언어처리 기술 개발에 사용될 수 있는 중요한 언어 자원이다. 본 연구는 실제로 어휘의미분석 말뭉치를 구축하기 위한 기반 연구로서, 어휘의미분서 말뭉치의 설계와 구축 방법론상의 제반 사항을 살펴보고, 중의적 단어들의 분포적 특징과 단어의 중의성 해결 단계에서 발생할 수 있는 문제점을 지적하고, 아울러 그 해결 방법을 모색해 의는 것을 목적으로 한다.

  • PDF

Word2Vec를 이용한 한국어 단어 군집화 기법 (Korean Language Clustering using Word2Vec)

  • 허지욱
    • 한국인터넷방송통신학회논문지
    • /
    • 제18권5호
    • /
    • pp.25-30
    • /
    • 2018
  • 최근 인터넷의 발전과 함께 사용자들이 원하는 정보를 빠르게 획득하기 위해서는 효율적인 검색 결과를 제공해주는 정보검색이나 데이터 추출등과 같은 연구 분야에 대한 중요성이 점점 커지고 있다. 하지만 새롭게 생겨나는 한국어 단어나 유행어들은 의미파악하기가 어렵기 때문에 주어진 단어와 의미적으로 유사한 단어들을 찾아 분석하는 기법들에 대한 연구가 필요하다. 이를 해결하기 위한 방법 중 하나인 단어 군집화 기법은 문서에서 주어진 단어와 의미상 유사한 단어들을 찾아서 묶어주는 기법이다. 본 논문에서는 Word2Vec기법을 이용하여 주어진 한글 문서의 단어들을 임베딩하여 자동적으로 유사한 한국어 단어들을 군집화 하는 기법을 제안한다.

IT 분야에서 컨버전스의 의미와 미래 전망 (The future prospect of convergence in IT)

  • 이양종;박수현
    • 한국IT서비스학회:학술대회논문집
    • /
    • 한국IT서비스학회 2005년도 춘계학술대회
    • /
    • pp.222-230
    • /
    • 2005
  • 컨버전스(Convergence)란 단어는 집합, 집중, 수렴, 한 곳으로 모여짐 등의 뜻을 지닌 일반적인 용어로써 매우 발전해가고 있는 IT 분야에서 다양한 수요자의 욕구와 기술의 진화에 따라 최근에 매우 빈번하게 등장하고 있는 용어이자, 중요한 화두 중에 하나가 되고 있다. 이에 단어가 지니고 있는 일반적 의미를 다각적으로 분석함과 동시에 그 의미가 정보통신분야의 기술적 측면에서 또한 활용적인 측면에서 어떤 암시와 효과를 나타내고 있고, 나아가 IT 분야의 발전을 향한 목표 지향적인 측면에서의 역할이 가능한지와 또 다른 발전과 진화에 따라 어느 정도의 생명력과 경쟁력은 지닐 수 있는지를 살펴보고자 한다. 20세기 후반에 등장한 새로운 산업의 빅뱅이 되고 있는 IT 분야가 전세계로 확산, 발전되어감에 따라 수많은 일반적인 단어와 용어 들이 정보통신분야에서 도입, 활용하였고 이러한 용어들은 단어 자체의 의미 보다는 정보통신분야 발전의 현재와 미래를 규정해왔고, 나아가 정보통신 발전에 따른 혜택을 받는 전세계와 국내의 이용자들에게 많은 변화를 제공함과 동시에 연관분야의 산업에도 긍정적이던 부정적이던지 상호간 막대한 영향을 미쳐왔다고 분석된다. 이에 본 논문 자료는 IT 전문 용어가 아닌 일반적인 용어 중에서 IT 분야의 어떤 형태로든 영향을 미칠 용어 중에서 컨버전스란 단어를 통해 IT 분야의 현주소를 사례를 중심으로 분석, 점검하고 향후 IT 분야에서 컨버전스가 적용될 미래의 발전 모습을 전망하고자 하는데 있다.

  • PDF

Apriori-Genetic 알고리즘을 이용한 베이지안 자동 문서 분류 (Bayesian Automatic Document Categorization Using Apriori-Genetic Algorithm)

  • 고수정;이정현
    • 정보처리학회논문지B
    • /
    • 제8B권3호
    • /
    • pp.251-260
    • /
    • 2001
  • 기존의 베이지안 문서 분류는 문서의 특징 표현에 있어서 단어간의 의미를 정확하게 반영하지 못하는 문제점이 있다. 이러한 문제점을 해결하기 위해, 본 논문에서는 Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류 방법을 제안한다. Apriori 알고리즘은 단어간의 의미를 반영한 연관 단어의 형태로 문서의 특징을 추출하며 추출된 연관 단어로 연관 단어 지식베이스를 구축한다. Aprrori 알고리즘만으로 연관 단어 지식베이스를 구축할 경우, 지식베이스 안에 부적당한 연관 단어가 포함된다. 따라서 문서 분류의 정확도가 낮아지는 단점이 있다. 이러한 단점을 보완하기 위해, Genetic 알고리즘을 이용하여 연관 단어 지식베이스를 최적화하는 방법을 사용한다. 베이지안 확률을 이용하는 분류자는 최적화된 연관 단어 지식베이스를 기반으로 문서를 클래스별로 분류한다. Apriori-Genetic 알고리즘을 이용한 베이지안 문서 분류의 성능을 평가하기 위해, Apriori 알고리즘을 이용한 베이지안 문서 분류 방법, 역문헌빈도를 사용한 베이지안 문서 분류 방법, 기존의 단순 베이지안 분류 방법과 비교하였다.

  • PDF

Unknown Word Lexical Dictionary의 자동 생성 방법 (Automatic Construction Method of Unknown Word Lexical Dictionary)

  • 황명권;윤병수;정일용;김판구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2008년도 춘계학술발표대회
    • /
    • pp.3-6
    • /
    • 2008
  • 본 연구는 의미적 정보 검색을 위한 연구 중의 하나로, 현재까지의 의미적 문서 검색에서 큰 걸림돌이었던 사전에 정의되지 않은 단어(Unknown Word)들의 어휘 사전(Lexical Dictionary)을 자동으로 생성하기 위한 것이다. 이를 위해 UW를 기존의 영어 어휘 사전인 워드넷(WordNet)에 정의되지 않은 단어로 간주하고, 웹 문서의 입력을 통하여 UW와 관련된 단어들을 추출하여 의미적 관련 정도를 확률적, 의미적 방법으로 측정한다. 본 논문에서는 UW Lexical Dictionary를 자동으로 구축하기 위한 방법에 대해서만 기술하였고, 정량적이고 객관적인 평가는 포함하지 않고 있다. 하지만 본 연구의 효용성을 확인하기 위한 몇 가지 문서로부터 추출된 결과는 본 연구가 상당히 의미적이며 가치가 높을 것으로 기대되고 있다.

위키피디아에 기반한 단어 사이의 의미적 연결 관계 탐색 (Discovering Semantic Relationships between Words by using Wikipedia)

  • 김주황;홍민성;이오준;정재은
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2015년도 제52차 하계학술대회논문집 23권2호
    • /
    • pp.17-18
    • /
    • 2015
  • 본 논문에서는 위키피디아를 이용하여 단어 사이의 유사도와 내포된 연결 단어들에 대한 탐색 기법을 제안 한다. 위키피디아에서 제공하는 API를 이용하여 두 단어 사이를 탐색함으로써, 기존 단어 사이의 유사도를 계산하는 방식보다 더 간단하고 폭 넓은 의미 집단을 포괄할 수 있다. 이는 그래프적 특성에 기반하며 그래프를 구성하는 방식으로써 동적 방식과 정적 방식으로 구성된다.

  • PDF