Word representation, an important area in natural language processing(NLP) used machine learning, is a method that represents a word not by text but by distinguishable symbol. Existing word embedding employed a large number of corpora to ensure that words are positioned nearby within text. However corpus-based word embedding needs several corpora because of the frequency of word occurrence and increased number of words. In this paper word embedding is done using dictionary definitions and semantic relationship information(hypernyms and antonyms). Words are trained using the feature mirror model(FMM), a modified Skip-Gram(Word2Vec). Sense similar words have similar vector. Furthermore, it was possible to distinguish vectors of antonym words.
Proceedings of the Korea Information Processing Society Conference
/
2019.05a
/
pp.263-266
/
2019
단어 임베딩 모델 중 현재 널리 사용되는 word2vec 모델은 언어의 의미론적 유사성을 잘 반영한다고 알려져 있다. 본 논문은 word2vec 모델로 학습된 단어 벡터가 실제로 의미론적 유사성을 얼마나 잘 반영하는지 확인하는 것을 목표로 한다. 즉, 유사한 범주의 단어들이 벡터 공간상에 가까이 임베딩되는지 그리고 서로 구별되는 범주의 단어들이 뚜렷이 구분되어 임베딩되는지를 확인하는 것이다. 간단한 군집화 알고리즘을 통한 검증의 결과, 상식적인 언어 지식과 달리 특정 범주의 단어들은 임베딩된 벡터 공간에서 뚜렷이 구분되지 않음을 확인했다. 결론적으로, 단어 벡터들의 유사도가 항상 해당 단어들의 의미론적 유사도를 의미하지는 않는다. Word2vec 모델의 결과를 응용하는 향후 연구에서는 이런 한계점에 고려가 요청된다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.380-382
/
2019
어의 중의성 문제는 자연어 분석 과정에서 공통적으로 발생하는 문제로 한 가지의 단어 표현이 여러 의미로 해석될 수 있기 때문에 발생한다. 이를 해결하기 위한 어의 중의성 해소는 입력 문장 중 여러 개의 의미로 해석될 수 있는 단어가 현재 문맥에서 어떤 의미로 사용되었는지 분류하는 기술이다. 어의 중의성 해소는 입력 문장의 의미를 명확하게 해주어 정보검색의 성능을 향상시키는데 중요한 역할을 한다. 본 논문에서는 딥러닝을 이용하여 어의 중의성 해소를 수행하며 기존 모델의 단점을 극복하여 입력 문장에서 중의적 단어를 판별하는 작업과 그 단어의 의미를 분류하는 작업을 동시에 수행하는 모델을 제안한다.
Journal of Korea Society of Industrial Information Systems
/
v.9
no.1
/
pp.17-23
/
2004
This paper proposes to determine word senses in Korean language processing by corpus-based ontology learning. Our approach is a hybrid method. First, we apply the previously-secured dictionary information to select the correct senses of some ambiguous words with high precision, and then use the ontology to disambiguate the remaining ambiguous words. The mutual information between concepts in the ontology was calculated before using the ontology as knowledge for disambiguating word senses. If mutual information is regarded as a weight between ontology concepts, the ontology can be treated as a graph with weighted edges, and then we locate the least weighted path from one concept to the other concept. In our practical machine translation system, our word sense disambiguation method achieved a 9% improvement over methods which do not use ontology for Korean translation.
본 논문에서는 워드 임베딩과 유의어를 이용하여 세종 전자사전을 확장하는 방법을 제시한다. 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%의 성능을 보였다. 의미 범주가 할당되지 않은 새로운 단어에 대해서도 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.190-193
/
2017
'서치 방지 단어'는 SNS 상에서 사용자들이 작성한 문서의 검색 및 수집을 피하기 위하여 사용하는 변이형을 뜻한다. 하나의 검색 키워드가 있다면 그와 같은 대상을 나타내는 변이형이 여러 형태로 존재할 수 있으며, 이들 변이형에 대한 검색 결과를 함께 수집할 수 있다면 데이터 확보가 중요하게 작용하는 다양한 연구에 큰 도움이 될 것이다. 본 연구에서는 특정 단어가 주어진 키워드로부터 의미 벡터 상의 거리가 가까울수록, 그리고 주어진 키워드와 비슷한 음성적 형태 즉 발음을 가질수록, 해당 키워드의 변이형일 가능성이 높을 것이라고 가정하였다. 이에 따라 단어 임베딩을 이용한 의미 유사도와 최소 편집 거리를 응용한 음성적 유사도를 이용하여 주어진 검색 키워드와 유사한 변이형들을 제안하고자 하였다. 그 결과 구성된 변이형 후보의 목록에는 다양한 형태의 단어들이 포함되었으며, 이들 중 다수가 실제 SNS 상에서 같은 의미로 사용되고 있음이 확인되었다.
Annual Conference on Human and Language Technology
/
2016.10a
/
pp.51-55
/
2016
본 논문에서는 임상 의사 결정 지원을 위한 UMLS와 위키피디아를 이용하여 지식 정보를 추출하고 질병 중심 문서 클러스터와 단어 의미 표현을 이용하여 질의 확장 및 문서를 재순위화하는 방법을 제안한다. 질의로는 해당 환자가 겪고 있는 증상들이 주어진다. UMLS와 위키피디아를 사용하여 병명과 병과 관련된 증상, 검사 방법, 치료 방법 정보를 추출하고 의학 인과 관계를 구축한다. 또한, 위키피디아에 나타나는 의학 용어들에 대하여 단어의 효율적인 의미 추정 기법을 이용하여 질병 어휘의 의미 표현 벡터를 구축하고 임상 인과 관계를 이용하여 질병 중심 문서 클러스터를 구축한다. 추출한 의학 정보를 이용하여 질의와 관련된 병명을 추출한다. 이후 질의와 관련된 병명과 단어 의미 표현을 이용하여 확장 질의를 선택한다. 또한, 질병 중심 문서 클러스터를 이용하여 문서 재순위화를 진행한다. 제안 방법의 유효성을 검증하기 위해 TREC Clinical Decision Support(CDS) 2014, 2015 테스트 컬렉션에 대해 비교 평가한다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.237-240
/
2020
사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.
The present study investigates the effects of semantic transparency on the learning of new words using both behavioral measures and event-related brain potentials. Participants studied novel words with either semantically transparent or opaque definitions while their brain potentials were recorded. Learning performance was assessed with both a lexical decision task and a recall test. The results indicated that transparent novel words were easier to learn than opaque words. More specifically, self-paced learning times were shorter for transparent novel words across three study sessions. Transparent words also elicited reduced N400s compared with opaque words in all sessions. Moreover, lexical decisions to both learned novel words and real words were faster and more accurate within the transparent condition compared to the opaque condition. These results suggest that semantic transparency also plays an important role within word learning, just as within word recognition, further supporting the notion that morphological information is critical within lexical processing.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.268-271
/
2022
단어 의미 모호성 해소는 동형이의어의 의미를 문맥에 맞게 결정하는 일이다. 최근 연구에서는 희소 데이터 처리를 위해 시소러스를 사용해 의미 어휘를 압축하고 사용하는 방법이 좋은 성능을 보였다[1]. 본 연구에서는 시소러스 없이 군집화 알고리즘으로 의미 어휘를 압축하는 방법의 성능 향상을 위해 두 가지 방법을 제안한다. 첫째, 의미적으로 유사한 의미 어휘 집합인 범주(category) 정보를 군집화를 위한 초기 군집 생성에 사용한다. 둘째, 다양하고 많은 문맥 정보를 학습해 만들어진 품질 좋은 벡터를 군집화에 사용한다. 영어데이터인 SemCor 데이터를 학습하고 Senseval, Semeval 5개 데이터로 평가한 결과, 제안한 방법의 평균 성능이 기존 연구보다 1.5%p 높은 F1 70.6%를 달성했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.