• 제목/요약/키워드: 단어 의미 정보

검색결과 606건 처리시간 0.026초

개념분류기법을 적용한 한국에 명사분류 (Korean Noun Clustering Via Incremental Conceptual Clustering)

  • 정연수;조정미;김길창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1995년도 제7회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.50-55
    • /
    • 1995
  • 많은 언어관계들이 의미적으로 유사한 단어들의 집합에 적응된다. 그러므로 단어들을 의미가 비슷한 것들의 집합으로 분류하는 것은 아주 유용한 일이다. 본 논문에서는 말뭉치로부터의 동사와 명사의 분포정보를 이용하여 명사들을 분류하고자 한다. 한국어에서는 명사마다 문장에서 그 명사를 특정한 격으로 사용할 수 있는 동사들이 제한되어 있다. 그러므로 본 논문에서는 말뭉치에서 나타나는 명사와 그 명사를 특정한 격으로 사용하는 동사들의 분포정보로부터 명사들을 분류하는 방법을 제시한다. 형태소 해석된 50만 단어 말뭉치에서 가장 빈도수가 높은 명사 85단어를 대상으로 실험하였다. 명사와 동사의 구문정보를 사용하므로 의미적으로는 다르지만 쓰임이 비슷한 단어들도 같은 부류로 분류되었다. 의미적으로 애매성을 가지는 명사들의 경우도 실험결과를 나쁘게하는 요인이 되었다. 그리고, 좀더 좋은 결과를 얻기 위해서는 동사들도 의미가 유사한 것들로 분류한 후, 명사와 동사의 분포정보가 아닌 명사와 동사들의 집합의 분포정보를 이용하는 것도 종은 방법이 될 것이다.

  • PDF

신조어의 의미 학습을 위한 딥러닝 기반 표적 마스킹 기법 (Deep Learning-based Target Masking Scheme for Understanding Meaning of Newly Coined Words)

  • 남건민;서수민;곽기영;김남규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제64차 하계학술대회논문집 29권2호
    • /
    • pp.391-394
    • /
    • 2021
  • 최근 딥러닝(Deep Learning)을 활용하여 텍스트로 표현된 단어나 문장의 의미를 파악하기 위한 다양한 연구가 활발하게 수행되고 있다. 하지만, 딥러닝을 통해 특정 도메인에서 사용되는 언어를 이해하기 위해서는 해당 도메인의 충분한 데이터에 대해 오랜 시간 학습이 수행되어야 한다는 어려움이 있다. 이러한 어려움을 극복하고자, 최근에는 방대한 양의 데이터에 대한 학습 결과인 사전 학습 언어 모델(Pre-trained Language Model)을 다른 도메인의 학습에 적용하는 방법이 딥러닝 연구에서 많이 사용되고 있다. 이들 접근법은 사전 학습을 통해 단어의 일반적인 의미를 학습하고, 이후에 단어가 특정 도메인에서 갖는 의미를 파악하기 위해 추가적인 학습을 진행한다. 추가 학습에는 일반적으로 대표적인 사전 학습 언어 모델인 BERT의 MLM(Masked Language Model)이 다시 사용되며, 마스크(Mask) 되지 않은 단어들의 의미로부터 마스크 된 단어의 의미를 추론하는 형태로 학습이 이루어진다. 따라서 사전 학습을 통해 의미가 파악되어 있는 단어들이 마스크 되지 않고, 신조어와 같이 의미가 알려져 있지 않은 단어들이 마스크 되는 비율이 높을수록 단어 의미의 학습이 정확하게 이루어지게 된다. 하지만 기존의 MLM은 무작위로 마스크 대상 단어를 선정하므로, 사전 학습을 통해 의미가 파악된 단어와 사전 학습에 포함되지 않아 의미 파악이 이루어지지 않은 신조어가 별도의 구분 없이 마스크에 포함된다. 따라서 본 연구에서는 사전 학습에 포함되지 않았던 신조어에 대해서만 집중적으로 마스킹(Masking)을 수행하는 방안을 제시한다. 이를 통해 신조어의 의미 학습이 더욱 정확하게 이루어질 수 있고, 궁극적으로 이러한 학습 결과를 활용한 후속 분석의 품질도 향상시킬 수 있을 것으로 기대한다. 영화 정보 제공 사이트인 N사로부터 영화 댓글 12만 건을 수집하여 실험을 수행한 결과, 제안하는 신조어 표적 마스킹(NTM: Newly Coined Words Target Masking)이 기존의 무작위 마스킹에 비해 감성 분석의 정확도 측면에서 우수한 성능을 보임을 확인하였다.

  • PDF

영한 기계번역에서의 복합어구 인식 (Complex Phrase Recognition in English-to-Korean Machine Translation : MATES/EK)

  • 장두성;김덕봉;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1992년도 제4회 한글 및 한국어정보처리 학술대회
    • /
    • pp.503-510
    • /
    • 1992
  • 복합어는 여러개의 단어가 하나의 의미론 나타내는 단어를 말한다. 이 논문에서는 번역시 구성단어들의 의미의 합이 아닌 다른 또 하나의 의미를 나타내는 단어를 대상으로 한다. 이러한 복합어는 구문해석 단계에서 많은 애매성의 원인이 되며, 유형에 따라 숙어 처럼 새로운 의미로 항상 같이 쓰이는 복합어와 복합어의 형성이 복잡하여 규칙으로서 단어를 이해할 필요가 있는 단어로 구분할 수 있다. 첫번째 유형은 단어의 형성이 단순하여 하나의 사전 엔트리로 등록될 수 있다. 이때 이들 복합어가 가지는 개별 어휘 규칙을 같이 사전에 등록하여 사전을 효과적 이용할 수 있다. 두번째 유형은 규칙에 의한 처리를 하여야 한다. 이러한 복합어에 대한 인식을 구문분석이전에 행함으로서 적은 노력으로 복합어로 인한 전체 문장의 애매성을 감소시키고, 문장내 단어의 수를 감소시킴으로서 전채 번역시스템의 효율을 증대하며, 복합어의 처리는 번역문을 자연스럽게 생성하는 데 큰 효과를 나타낸다.

  • PDF

워드 임베딩을 이용한 세종 전자사전 확장 (Extension Sejong Electronic Dictionary Using Word Embedding)

  • 박다솔;차정원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.75-78
    • /
    • 2016
  • 본 논문에서는 워드 임베딩과 유의어를 이용하여 세종 전자사전을 확장하는 방법을 제시한다. 세종 전자사전에 나타나지 않은 단어에 대해 의미 범주 할당의 시스템 성능은 32.19%이고, 확장한 의미 범주 할당의 시스템 성능은 51.14%의 성능을 보였다. 의미 범주가 할당되지 않은 새로운 단어에 대해서도 논문에서 제안한 방법으로 의미 범주를 할당하여 세종 전자사전의 의미 범주 단어 확장에 대해 도움이 됨을 증명하였다.

  • PDF

우리말샘 사전을 이용한 단어 의미 유사도 측정 모델 개발 (A Word Semantic Similarity Measure Model using Korean Open Dictionary)

  • 김호용;이민호;서동민
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.3-4
    • /
    • 2018
  • 단어 의미 유사도 측정은 정보 검색이나 문서 분류와 같이 자연어 처리 분야 문제를 해결하는 데 큰 도움을 준다. 이러한 의미 유사도 측정 문제를 해결하기 위하여 단어의 계층 구조를 사용한 기존 연구들이 있지만 이는 단어의 의미를 고려하고 있지 않아 만족스럽지 못한 결과를 보여주고 있다. 본 논문에서는 국립국어원에서 간행한 표준국어대사전에 50만 어휘가 추가된 우리말샘 사전을 기반으로 하여 한국어 단어에 대한 계층 구조를 파악했다. 그리고 단어의 용례를 word2vec 모델에 학습하여 단어의 문맥적 의미를 파악하고, 단어의 정의문을 sent2vec 모델에 학습하여 단어의 사전적 의미를 파악했다. 또한, 구축된 계층 구조와 학습된 word2vec, sent2vec 모델을 이용하여 한국어 단어 의미 유사도를 측정하는 모델을 제안했다. 마지막으로 성능 평가를 통해 제안하는 모델이 기존 모델보다 향상된 성능을 보임을 입증했다.

  • PDF

잠재의미구조 기반 단어 유사도에 의한 역어 선택 (Target Word Selection using Word Similarity based on Latent Semantic Structure in English-Korean Machine Translation)

  • 장정호;김유섭;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.502-504
    • /
    • 2002
  • 본 논문에서는 대량의 말뭉치에서 추출된 잠재의미에 기반하여 단어간 유사도를 측정하고 이를 영한 기계 번역에서의 역어선택에 적용한다. 잠재의미 추출을 위해서는 latent semantic analysis(LSA)와 probabilistic LSA(PLSA)를 이용한다. 주어진 단어의 역어 선택시 기본적으로 연어(collocation) 사전을 검색하고, 미등록 단어의 경우 등재된 단어 중 해당 단어와 유사도가 높은 항목의 정보를 활용하며 이 때 $textsc{k}$-최근접 이웃 방법이 이용된다. 단어들간의 유사도 계산은 잠재의미 공간상에서 이루어진다. 실험에서, 연어사전만 이용하였을 경우보다 최고 15%의 성능 향상을 보였으며, PLSA에 기반한 방법이 LSA에 의한 방법보다 역어선택 성능 면에서 약간 더 우수하였다.

  • PDF

글 읽기에서 나타난 중심와주변 의미 미리보기 효과 : 중국어-한국어 이중언어자 대상으로 (Parafoveal Semantic Preview Effect in Reading of Chinese-Korean Bilinguals)

  • 왕상;주혜리;고성룡
    • 인지과학
    • /
    • 제34권4호
    • /
    • pp.315-347
    • /
    • 2023
  • 이 연구는 시선 추적의 경계선 기법을 사용하여, 자연스러운 읽기 과정에서 중심와주변에 제시된 단어의 표기체계와 의미 정보가 표적 단어의 읽기에 미치는 영향을 알아보았다. 참가자는 중국어와 한국어 이중언어자였고, 읽기 문장은 한국어 단어와 중국어 단어가 혼용된 문장이었다. 참가자들의 읽기 과정은 안구 운동 추적 도구 EyelinkII를 통해 모니터링되었다. 화면에는 전체 문장이 제시되었고, 시선이 표적 위치로 이동하기 직전에 미리 제시되어 있던 미리보기 단어가 표적단어로 대체되었다. 표적단어는 언제나 한글 단어였고, 미리보기 단어는 (1) 표적단어와 동일 단어(예: 나라), (2) 동일 의미의 한자어 단어(예: 국가) (3) 동일 의미의 중국어 단어(예: 国家), (4) 무관련 중국어 단어(예: 围裙)였다. 2)와 3) 조건은 같은 단어로 표기 체계만 한글과 한자로 달랐다. 주요 측정치는 표적 단어에 시선이 고정되는 시간이었고, 동일 단어, 동일 의미 한자어 단어 그리고 동일 의미 중국어 단어 조건의 고정시간은 무관련 중국어 조건에서보다 짧았으며 주시시간은 동일한 의미 중국어 단어 조건에서 동일 단어 조건보다 짧게 관찰되었다. 이 결과는 중국어-한국어 이중 언어 사용자들이 중심와주변에서 의미 정보를 추출할 수 있음을 시사하고 중심와주변에 제시된 단어의 표기법과 의미 정보가 모두 읽기에 영향을 주었음을 보여준다.

공기정보 벡터를 이용한 한국어 명사의 의미구분 (Word Sense Disambiguation Using of Cooccurrence Information Vectors)

  • 신사임;이주호;최용석;최기선
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2001년도 제13회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.472-478
    • /
    • 2001
  • 본 논문은 문맥의 공기정보를 사용한 한국어 명사의 의미구분에 관한 연구이다. 대상 명사에 대한 문맥의 지엽적인 단어분포는 명사의 의미구분을 위한 의미적 특성을 표현하는데 충분하지 못하다. 본 논문은 의미별로 수집한 문맥 정보를 기저 벡터화 하는 방법을 제안한다. 정보의 중요도 측정을 통하여 의미구분에 불필요한 문맥정보는 제거하고, 남아있는 문맥의 단어들은 변별력 강화를 위하여 상의어 정보로 바꾸어 기저벡터에 사용한다. 상의어 정보는 단어의 형태와 사전 정의문의 패턴을 통해 추출한다. 의미 벡터를 통한 의미구분에 실패하였을 경우엔 훈련데이터에서 가장 많이 나타난 의미로 정답을 제시한다. 실험을 위해 본 논문에서는 SENSEVAL 실험집합을 사용하였으며, 제시한 방법으로 공기정보의 가공 없이 그대로 실험한 방법과 비교하여 최고 42% 정도의 정확률 향상을 나타내었다.

  • PDF

한글 감정단어의 의미적 관계와 범주 분석에 관한 연구 (A Study on the Analysis of Semantic Relation and Category of the Korean Emotion Words)

  • 이수상
    • 한국도서관정보학회지
    • /
    • 제47권2호
    • /
    • pp.51-70
    • /
    • 2016
  • 이 연구의 목적은 한글로 된 주요감정단어들의 리스트를 대상으로 의미적 관계의 네트워크와 극성과 각성의 범주를 분석하는데 있다. 분석결과는 다음과 같다. 첫째, 감정단어 네트워크에서 각 감정단어들은 의미적으로 연결되어 있었다. 이것은 의미적 유사성에 따라 감정단어들의 유형을 구분하는 것을 어렵게 하는 특징이다. 대신에 의미적 관계의 감정단어 네트워크에서 중심적인 역할을 수행하는 감정단어들을 확인할 수 있었다. 둘째, 극성과 각성의 차원을 혼합한 범주에서, 많은 감정단어들은 부정적인 극성과 높은 각성의 단어들 집단과 부정적인 극성과 중간수준 각성의 단어들 집단으로 분류되었다. 이러한 한글감정단어의 특성들은 도서관이나 문헌정보에 나타나는 각종 텍스트 데이터의 감정분석에 유용하게 활용될 것이다.

의미적 계층정보를 반영한 단어의 분산 표현 (Distributed Representation of Words with Semantic Hierarchical Information)

  • 김민호;최성기;권혁철
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.941-944
    • /
    • 2017
  • 심층 학습에 기반을 둔 통계적 언어모형에서 가장 중요한 작업은 단어의 분산 표현(Distributed Representation)이다. 단어의 분산 표현은 단어 자체가 가지는 의미를 다차원 공간에서 벡터로 표현하는 것으로서, 워드 임베딩(word embedding)이라고도 한다. 워드 임베딩을 이용한 심층 학습 기반 통계적 언어모형은 전통적인 통계적 언어모형과 비교하여 성능이 우수한 것으로 알려져 있다. 그러나 워드 임베딩 역시 자료 부족분제에서 벗어날 수 없다. 특히 학습데이터에 나타나지 않은 단어(unknown word)를 처리하는 것이 중요하다. 본 논문에서는 고품질 한국어 워드 임베딩을 위하여 단어의 의미적 계층정보를 이용한 워드 임베딩 방법을 제안한다. 기존연구에서 제안한 워드 임베딩 방법을 그대로 활용하되, 학습 단계에서 목적함수가 입력 단어의 하위어, 동의어를 반영하여 계산될 수 있도록 수정함으로써 단어의 의미적 계층청보를 반영할 수 있다. 본 논문에서 제안한 워드 임베딩 방법을 통해 생성된 단어 벡터의 유추검사(analog reasoning) 결과, 기존 방법보다 5%가 증가한 47.90%를 달성할 수 있었다.