본 논문에서는 한국어 음성인식 시스템의 성능 향상을 위해 청각 주파수 분해능을 가진 MEL-LPC Cepstrum을 음소단위의 HMM(Hidden Markov Model)을 기반으로 하는 인식 시스템에 적용하여 그 결과를 비교 검토하였다. 선형예측(LP) 분석 후에 후처리로서 주파수를 왜곡시킨 LPC-MEL 분석이 계산량이 적고 효과적이라 일반적으로 많이 사용되고 있으나 주파수 분해능은 많이 개선되지 않는다. 따라서 본 논문에서는 주파수 분해능을 개선하기 위해, 원 음성신호로부터 직접적으로 멜주파수로 왜곡시킨 후 선형 예측 분석을 수행하는 MEL-LPC 분석방법을 이용한 음소기반의 화자 독립 음성인식 시스템을 구성하여 기존의 LPC-MEL 분석방법과 비교실험을 통하여 MEL-LPC 분석방법의 유효성을 검토하였다. 실험에 사용한 음성 데이터베이스는 음소 및 단어 인식실험에서는 ETRI 445단어 DB, 연속 숫자음인식 실험에서는 KLE 4연속 숫자음 DB를 사용하였다. 화자 독립 음소인식 실험의 경우, 묵음을 제외한 47개의 유사 음소에 대하여 4상태 3출력의 Left-to-Right 모델을이용하였다. 단어 및 연속 숫자음 인식 실험의 경우, 유한상태 네트워크에 의한 OPDP법을 이용하였다. 화자 독립 음소, 단어 및 4연속 숫자음 인식 실험결과, 기존의 LPC-MEL Cepstrum을 사용한 경우보다 MEL-LPC Cepstum을 사용한 경우가 더 높은 인식률을 나타내어 한국어 음성인식 시스템에서 MEL-LPC 분석방법의 유효성을 확인할 수 있었다.
사용자별로 SNS/RSS 구독 뉴스 분석을 통해 사용자가 관심이 있는 새로운 뉴스를 추천해 주는 시스템을 설계하고 구현한다. 뉴스 추천 시스템의 설계를 위해 전체 시스템에서 사용자와 서버에서의 작업을 명세하고, 이중에 주요 기능을 담당하는 부분을 구현한다. 구현된 주요 기능은 선호 문서가 들어왔을 때 특징을 추출하고 이를 저장하는 것과 새로운 문서가 들어왔을 때 선호 문서군과 얼마나 유사한지 판별하여 문서에 대한 추천 여부를 결정하는 것이다. 선호 문서의 특징 추출에 대해서는 형태소 분석을 통해 단어와 빈도를 추출하고 이를 누적하여 저장한다. 또한, 새로운 문서가 들어왔을 때 코사인 유사도를 계산하여 사용자가 선호하는 학습문서와의 유사도 비교를 통해 문서 추천 여부를 결정한다. 구현된 시스템에서 실제로 연관된 선호 문서군을 학습시키고, 연관된 새로운 문서 혹은 연관되지 않은 새로운 문서에 대한 추천 여부를 비교하는 것으로 시스템 정확도를 파악한다.
유사 특허를 검색하는 방법으로 기존에는 키워드 검색 방법을 사용하고 최근에는 머신러닝을 활용한 자동분류 방법을 사용하고 있다. 키워드 검색은 데이터 정제를 통해 정형화된 데이터 분석 방법으로 단문일 경우 검색에서는 정확도는 높지만 문서와 같이 여러 단어로 이루어진 장문일 경우 문장에 내포된 의미 분석을 할 수 없었다. 의미 분석 단계에서의 자동 분류 방법은 비정형 데이터 분석 방법으로 여러 단어로 이루어진 문장을 분류하는데 사용되고 있다. 그 동안 두 가지 방법을 결합하여 유사 문서 검색을 하려는 시도가 있었지만 비정형 데이터와 정형 데이터의 동시 사용에는 분석하는 방법이 다르기 때문에 동시 적용에는 알고리즘 상의 문제가 있었다. 이에 본 논문에서는 문서에서 함축된 키워드를 검출하고 잠재 의미 분석(LDA) 방식을 사용하여 사람이 개입하지 않고 문서를 효율적으로 자동분류하고 유사 특허를 검색할 수 있는 방법을 연구하였다.
시스템이 사용되는 분야가 점점 복잡해지고 대형화됨에 따라 시스템 개발에 있어 사용자 요구 사항의 올바른 분석과 서술이 중요하게 인식되고 있으며, 인터넷(internet)의 발전으로 분산 환경에서의 요구 사항 추출 및 분석의 필요성이 대두되고 있다. 본 논문에서는 자연어로 표현되는 요구 사항 문장을 유사도 측정 기법을 이용하여 주제별로 범주화(categorization)함으로써 분산 환경에서 수집된 요구 사항 문장을 분석하기 위한 기초를 제공할 수 있는 요구 사항 추출 지원 시스템을 제안한다. 제안된 시스템은 단어간, 문장간의 유사도 측정 기법을 이용하여 수집된 요구 사항 문장들을 주제별로 자동으로 분류함으로써 요구 사항 분석 시 초기 작업의 어려움을 줄이고 신속하고 정확하게 분석 작업을 수행하도록 지원할 것이다. 본 논문에서는 단어간, 문장간 유사도 측정 기법을 이용한 범주화 기법의 효율성을 실험을 통해 검증하였으며 구현된 시스템을 통해 추출, 처리되는 과정을 보여주고 있다.
이 연구에서는 프로파일링 분석과 동시출현단어 분석을 이용해 인접 학문과의 연관성을 바탕으로 한국어교육학의 정체성을 분석하고자 하였다. 먼저, 한국어교육학, 국어교육학, 국어학 학술지의 논문에서 추출한 주제어를 기반으로 저널 프로파일링 분석을 수행하였고 그 결과 한국어교육학 분야의 학술지들이 하나의 독립된 군집을 형성하는 것으로 나타났다. 그리고 학문 분야 프로파일링 분석과 동시출현단어 분석을 이용해 학문 분야 간 관계를 분석한 결과 한국어교육학이 국어학보다 국어교육학과 더 큰 유사성을 가지는 것으로 나타났다. 마지막으로, 동시출현단어 분석을 통해 세 학문 분야의 지적 구조를 비교 분석하였다. 이를 통해 한국어교육학에서만 출현한 주제들을 확인함으로써 인접학문들과의 관계 속에서 한국어교육학이 드러내는 정체성을 파악할 수 있었다.
국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.
본 연구는 1995년부터 2020년까지 기간의 '미혼모', '싱글맘', '비혼모' 키워드를 중심으로 시기별 빅데이터를 수집, 분석하여, 미혼모에 대한 관점 변화에 따른 적절한 정부의 지원정책 방향성을 제시하고자 한다. 자료수집을 위해 빅데이터 수집 플랫폼인 텍스톰을 활용하여 포털검색 사이트 네이버, 다음에서 데이터 수집 후, 데이터를 정제하는 과정을 거쳤다. 최종 정제된 데이터는 텍스톰에서 제공하는 단어빈도분석, TF-IDF 분석, N-gram 분석, UCINET6 프로그램을 통한 Network 분석과 CONCOR 분석을 진행하였다. 연구결과, 단어빈도분석, TF-IDF 분석에서는 유사한 단어들이 출현하였으나 연도별로 차이를 보였고, N-gram 분석에서는 단어 출현의 유사점은 있었으나 빈도수와 연쇄적으로 출현되는 단어들의 형태에 많은 차이가 있었으며 CONCOR 분석결과, 연도별로 다른 군집을 이루는 것을 볼 수 있었다. 본 연구는 미혼모의 관점 변화를 빅데이터의 분석을 통해 확인하고, 독립적인 여성들의 다양한 선택권을 위한 미혼모 정책, 그리고 그에 맞는 차별 없는 임신, 출산, 양육이 새로운 가족의 형태 내로 포용 되는 정책의 필요성을 제언한다.
본 연구의 목적은 '복압성 요실금'을 키워드로 검색된 연구들의 경향과 특성을 단어 빈도를 통해 분석하고, 워드 임베딩을 사용하여 그 관계를 모델링 하고자 하였다. 의학 서지 데이터베이스인 MEDLINE에 등록되어 있는 복압성 요실금 연구 9,868개 논문들의 초록 문자 데이터를 Python 프로그램을 이용하여 추출하였다. 그런 다음 빈도 분석을 통해 10개의 키워드를 선택하였다. 키워드 관련 단어들의 유사도는 Word2Vec 머신러닝 알고리즘으로 분석하였다. 그리고, t-SNE 기법을 사용하여 단어의 위치와 거리가 시각화하였고, 이에 따라 그룹을 분류하여 이를 분석하였다. 복압성 요실금과 관련된 연구는 1980년대 이후 빠르게 증가했다. 키워드 분석을 통해 논문 초록에서 가장 많이 사용된 키워드는 '여성', '요도', '수술'로 나타났다. Word2Vec 모델링을 통해 복압성 요실금 관련 연구에서 주요 키워드들과 가장 높은 연관성을 나타내는 단어들에는 '여성', '절박', '증상' 등이 있었다. 그리고, t-SNE 기법을 통해 키워드와 관련 단어들은 복압성 요실금의 증상, 신체 기관의 해부학적 특성, 그리고 수술적 중재를 중심으로 하는 3개의 그룹으로 분류될 수 있었다. 본 연구는 초록을 구성하는 단어들의 키워드 빈도 분석 및 워드임베딩 방식을 이용하여 복압성 요실금 관련 연구들의 동향을 살펴본 최초의 연구이다. 본 연구의 결과는 향후 연구자들이 복압성 요실금 관련 연구 분야의 주제와 방향성을 선택하는 데 있어 기초자료로 활용될 수 있을 것이다.
본 연구는 우리나라 과학기술정책 기조 변화에 관한 중장기적 비교 분석을 통해 정책기조의 변화를 파악하고 있다. 과학계량학(scientometrics)적 접근 방법을 이용하여 국가연구개발투자 효율성 관련 정책의 기조변화 및 이슈를 유형화하고, 시기별 과학기술투자 효율화 정책 기조의 방향을 분석한다. 정책기조의 변화 분석은 과학기술혁신5개년계획(1999-2002)부터 MB정부 과학기술기본계획(2008-현재)의 과학기술기본계획 문서를 이용하여, 과학기술투자 효율화 정책기조 변화에 관해서 공통단어분석을 수행하고 있다. 구체적으로 한 단락 안에 연구개발투자 효율성과 관련된 공통출현단어들을 추출하여 단어별로 빈도수, 상대빈도, 시기별 관련성 등을 분석한다. 연구개발투자 효율성과 공통으로 출현하는 공통출현단어의 순위유사성 분석과 중복률 분석을 종합하면, 연구개발투자 효율성 관련 정책기조의 변화는 Regime 1(과학기술혁신 5개년 계획과 참여정부 과학기술기본계획), Regime 2(과학기술기본계획과 참여정부 과학기술기본계획), Regime 3(MB 정부의 과학기술기본계획)로 구분할 수 있었다.
본 논문에서는 난이도를 고려하여 선택형 문항을 자동으로 생성하는 방법을 고안하였으며, 학습자 수준에 적합하도록 동적인 형태로 다양한 문항 제시를 할 수 있는 시스템을 구현하였다. 선택형 문제를 통한 평가에서는 적절한 규모의 문제 은행이 필요하다. 이와 같은 요구를 만족시키기 위해서는 보다 쉽고 빠른 방식으로 다양하고 많은 문제 및 문항을 생성할 수 있는 시스템이 필요한데, 본 논문에서는 문제 및 문항의 생성을 위하여 워드넷이라는 언어 자원을 이용한 자동 생성 방법을 고안하였다. 자동 생성을 위해서는 주어진 문장에서 형태소 분석을 통해 키워드를 추출하고, 각 키워드마다 워드넷의 계층적 특성에 따라 유사한 의미를 가진 후보 단어를 제시한다. 의미 유사 후보 단어를 제시할 때, 기존의 한국어 워드넷의 스키마를 개념간 의미 유사도 행렬을 구할 수 있는 형태의 스키마로 변경한다. 단어의 의미 유사도는 동의어를 의미하는 수준 0에서 거의 유사도가 없다고 볼 수 있는 수준 9까지 다양하게 제시될 수 있으며, 생성될 문항에 어느 정도의 유사도를 가진 어휘를 포함시키느냐에 따라서 출제자의 의도에 따른 난이도의 조정이 가능하다. 후보 어휘들의 의미 유사도 측정을 위해서, 본 논문에서는 두 가지 방법을 사용하여 구현하였다. 첫째는 단순히 두 어휘의 워드넷 상에서의 거리만을 고려한 것이고 둘째는 두 어휘가 포함되어 있는 트리 구조의 크기까지 추가적으로 고려한 것이다. 이러한 방법을 통하여 실제 출제자가 기존에 출제된 문제를 토대로 더 다양한 내용과 난이도를 가진 문제 또는 문항을 더 쉽게 출제할 수 있는 시스템을 개발할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.