• Title/Summary/Keyword: 단어 유사도

Search Result 548, Processing Time 0.022 seconds

Implementation of User Recommendation System based on Video Contents Story Analysis and Viewing Pattern Analysis (영상 스토리 분석과 시청 패턴 분석 기반의 추천 시스템 구현)

  • Lee, Hyoun-Sup;Kim, Minyoung;Lee, Ji-Hoon;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.12
    • /
    • pp.1567-1573
    • /
    • 2020
  • The development of Internet technology has brought the era of one-man media. An individual produces content on user own and uploads it to related online services, and many users watch the content of online services using devices that allow them to use the Internet. Currently, most users find and watch content they want through search functions provided by existing online services. These features are provided based on information entered by the user who uploaded the content. In an environment where content needs to be retrieved based on these limited word data, user unwanted information is presented to users in the search results. To solve this problem, in this paper, the system actively analyzes the video in the online service, and presents a way to extract and reflect the characteristics held by the video. The research was conducted to extract morphemes based on the story content based on the voice data of a video and analyze them with big data technology.

A Study on the Definition of Data Literacy for Elementary and Secondary Artificial Intelligence Education (초·중등 인공지능 교육을 위한 데이터 리터러시 정의 연구)

  • Kim, SeulKi;Kim, Taeyoung
    • 한국정보교육학회:학술대회논문집
    • /
    • 2021.08a
    • /
    • pp.59-67
    • /
    • 2021
  • The development of AI technology has brought about a big change in our lives. As AI's influence grows from life to society to the economy, the importance of education on AI and data is also growing. In particular, the OECD Education Research Report and various domestic information and curriculum studies address data literacy and present it as an essential competency. Looking at domestic and international studies, one can see that the definition of data literacy differs in its specific content and scope from researchers to researchers. Thus, the definition of major research related to data literacy was analyzed from various angles and derived from various angles. In key studies, Word2vec natural language processing methods, along with word frequency analysis used to define data literacy, are used to analyze semantic similarities and nominate them based on content elements of curriculum research to derive the definition of 'understanding and using data to process information'. Based on the definition of data literacy derived from this study, we hope that the contents will be revised and supplemented, and more research will be conducted to provide a good foundation for educational research that develops students' future capabilities.

  • PDF

Keyword Network Visualization for Text Summarization and Comparative Analysis (문서 요약 및 비교분석을 위한 주제어 네트워크 가시화)

  • Kim, Kyeong-rim;Lee, Da-yeong;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.44 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Most of the information prevailing in the Internet space consists of textual information. So one of the main topics regarding the huge document analyses that are required in the "big data" era is the development of an automated understanding system for textual data; accordingly, the automation of the keyword extraction for text summarization and abstraction is a typical research problem. But the simple listing of a few keywords is insufficient to reveal the complex semantic structures of the general texts. In this paper, a text-visualization method that constructs a graph by computing the related degrees from the selected keywords of the target text is developed; therefore, two construction models that provide the edge relation are proposed for the computing of the relation degree among keywords, as follows: influence-interval model and word- distance model. The finally visualized graph from the keyword-derived edge relation is more flexible and useful for the display of the meaning structure of the target text; furthermore, this abstract graph enables a fast and easy understanding of the target text. The authors' experiment showed that the proposed abstract-graph model is superior to the keyword list for the attainment of a semantic and comparitive understanding of text.

A Method to Solve the Entity Linking Ambiguity and NIL Entity Recognition for efficient Entity Linking based on Wikipedia (위키피디아 기반의 효과적인 개체 링킹을 위한 NIL 개체 인식과 개체 연결 중의성 해소 방법)

  • Lee, Hokyung;An, Jaehyun;Yoon, Jeongmin;Bae, Kyoungman;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.8
    • /
    • pp.813-821
    • /
    • 2017
  • Entity Linking find the meaning of an entity mention, which indicate the entity using different expressions, in a user's query by linking the entity mention and the entity in the knowledge base. This task has four challenges, including the difficult knowledge base construction problem, multiple presentation of the entity mention, ambiguity of entity linking, and NIL entity recognition. In this paper, we first construct the entity name dictionary based on Wikipedia to build a knowledge base and solve the multiple presentation problem. We then propose various methods for NIL entity recognition and solve the ambiguity of entity linking by training the support vector machine based on several features, including the similarity of the context, semantic relevance, clue word score, named entity type similarity of the mansion, entity name matching score, and object popularity score. We sequentially use the proposed two methods based on the constructed knowledge base, to obtain the good performance in the entity linking. In the result of the experiment, our system achieved 83.66% and 90.81% F1 score, which is the performance of the NIL entity recognition to solve the ambiguity of the entity linking.

Improving Hypertext Classification Systems through WordNet-based Feature Abstraction (워드넷 기반 특징 추상화를 통한 웹문서 자동분류시스템의 성능향상)

  • Roh, Jun-Ho;Kim, Han-Joon;Chang, Jae-Young
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.2
    • /
    • pp.95-110
    • /
    • 2013
  • This paper presents a novel feature engineering technique that can improve the conventional machine learning-based text classification systems. The proposed method extends the initial set of features by using hyperlink relationships in order to effectively categorize hypertext web documents. Web documents are connected to each other through hyperlinks, and in many cases hyperlinks exist among highly related documents. Such hyperlink relationships can be used to enhance the quality of features which consist of classification models. The basic idea of the proposed method is to generate a sort of ed concept feature which consists of a few raw feature words; for this, the method computes the semantic similarity between a target document and its neighbor documents by utilizing hierarchical relationships in the WordNet ontology. In developing classification models, the ed concept features are equated with other raw features, and they can play a great role in developing more accurate classification models. Through the extensive experiments with the Web-KB test collection, we prove that the proposed methods outperform the conventional ones.

Extracting Typical Group Preferences through User-Item Optimization and User Profiles in Collaborative Filtering System (사용자-상품 행렬의 최적화와 협력적 사용자 프로파일을 이용한 그룹의 대표 선호도 추출)

  • Ko Su-Jeong
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.7
    • /
    • pp.581-591
    • /
    • 2005
  • Collaborative filtering systems have problems involving sparsity and the provision of recommendations by making correlations between only two users' preferences. These systems recommend items based only on the preferences without taking in to account the contents of the items. As a result, the accuracy of recommendations depends on the data from user-rated items. When users rate items, it can be expected that not all users ran do so earnestly. This brings down the accuracy of recommendations. This paper proposes a collaborative recommendation method for extracting typical group preferences using user-item matrix optimization and user profiles in collaborative tittering systems. The method excludes unproven users by using entropy based on data from user-rated items and groups users into clusters after generating user profiles, and then extracts typical group preferences. The proposed method generates collaborative user profiles by using association word mining to reflect contents as well as preferences of items and groups users into clusters based on the profiles by using the vector space model and the K-means algorithm. To compensate for the shortcoming of providing recommendations using correlations between only two user preferences, the proposed method extracts typical preferences of groups using the entropy theory The typical preferences are extracted by combining user entropies with item preferences. The recommender system using typical group preferences solves the problem caused by recommendations based on preferences rated incorrectly by users and reduces time for retrieving the most similar users in groups.

Content Analysis on the News Report Cases of Vibrio (내용분석을 통한 언론의 비브리오 보도사례 분석)

  • Woo, Ha-Joong;Kim, Young-Kyu
    • Journal of the Korean Society of Food Culture
    • /
    • v.22 no.4
    • /
    • pp.492-497
    • /
    • 2007
  • The objectives of this study are to determine the full extent of the negative media reports and to broaden public awareness through content analysis. Samples of this study are news reports on vibrio on three major broadcasting companies such as MBC, KBS and SBS and three major national newspapers such as Chosun daily, Joongang daily and Donga daily in Korea for 5 years from January 1st in 2000 to December 31st in 2004. Total 628 cases were searched through from the web sites of fore mentioned TV and newspaper companies. It is highly advised to adhere to the proven fact as much as possible and full and thorough research on the outcome should be sought by media before they reach to the public.

The Need for Paradigm Shift in Semantic Similarity and Semantic Relatedness : From Cognitive Semantics Perspective (의미간의 유사도 연구의 패러다임 변화의 필요성-인지 의미론적 관점에서의 고찰)

  • Choi, Youngseok;Park, Jinsoo
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.1
    • /
    • pp.111-123
    • /
    • 2013
  • Semantic similarity/relatedness measure between two concepts plays an important role in research on system integration and database integration. Moreover, current research on keyword recommendation or tag clustering strongly depends on this kind of semantic measure. For this reason, many researchers in various fields including computer science and computational linguistics have tried to improve methods to calculating semantic similarity/relatedness measure. This study of similarity between concepts is meant to discover how a computational process can model the action of a human to determine the relationship between two concepts. Most research on calculating semantic similarity usually uses ready-made reference knowledge such as semantic network and dictionary to measure concept similarity. The topological method is used to calculated relatedness or similarity between concepts based on various forms of a semantic network including a hierarchical taxonomy. This approach assumes that the semantic network reflects the human knowledge well. The nodes in a network represent concepts, and way to measure the conceptual similarity between two nodes are also regarded as ways to determine the conceptual similarity of two words(i.e,. two nodes in a network). Topological method can be categorized as node-based or edge-based, which are also called the information content approach and the conceptual distance approach, respectively. The node-based approach is used to calculate similarity between concepts based on how much information the two concepts share in terms of a semantic network or taxonomy while edge-based approach estimates the distance between the nodes that correspond to the concepts being compared. Both of two approaches have assumed that the semantic network is static. That means topological approach has not considered the change of semantic relation between concepts in semantic network. However, as information communication technologies make advantage in sharing knowledge among people, semantic relation between concepts in semantic network may change. To explain the change in semantic relation, we adopt the cognitive semantics. The basic assumption of cognitive semantics is that humans judge the semantic relation based on their cognition and understanding of concepts. This cognition and understanding is called 'World Knowledge.' World knowledge can be categorized as personal knowledge and cultural knowledge. Personal knowledge means the knowledge from personal experience. Everyone can have different Personal Knowledge of same concept. Cultural Knowledge is the knowledge shared by people who are living in the same culture or using the same language. People in the same culture have common understanding of specific concepts. Cultural knowledge can be the starting point of discussion about the change of semantic relation. If the culture shared by people changes for some reasons, the human's cultural knowledge may also change. Today's society and culture are changing at a past face, and the change of cultural knowledge is not negligible issues in the research on semantic relationship between concepts. In this paper, we propose the future directions of research on semantic similarity. In other words, we discuss that how the research on semantic similarity can reflect the change of semantic relation caused by the change of cultural knowledge. We suggest three direction of future research on semantic similarity. First, the research should include the versioning and update methodology for semantic network. Second, semantic network which is dynamically generated can be used for the calculation of semantic similarity between concepts. If the researcher can develop the methodology to extract the semantic network from given knowledge base in real time, this approach can solve many problems related to the change of semantic relation. Third, the statistical approach based on corpus analysis can be an alternative for the method using semantic network. We believe that these proposed research direction can be the milestone of the research on semantic relation.

Methodology for semi-autonomous rule extraction based on Restricted Language Set and ontology (제한된 언어집합과 온톨로지를 활용한 반자동적인 규칙생성 방법 연구)

  • Son, Mi-Ae;Choe, Yun-Gyu
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2007.05a
    • /
    • pp.297-306
    • /
    • 2007
  • 지능정보시스템 구축에 있어서 자동화가 어려운 단계중의 하나인 규칙 습득을 위해 활용되는 방법중의 하나가 제한된 언어집합 기법을 이용하는 것이다. 그러나 제한된 언어집합 기법을 이용해 규칙을 생성하기 위해서는 규칙을 구성하는 변수와 그 값들에 대한 정보가 사전에 정의되어 있어야 하는데, 유동성이 큰 웹 환경에서 예상 가능한 모든 변수와 그 값을 사전에 정의하는 것이 매우 어렵다. 이에 본 연구에서는 이러한 한계를 극복하기 위해 제한된 언어집합 기법과 온톨로지를 이용한 규칙 생성 방법론을 제시하였다. 이를 위해 지식의 습득 대상이 되는 특정 문장은 문법구조 분석기를 이용해 파싱을 수행하며, 파싱된 단어들을 이용해 규칙의 구성 요소인 변수와 그 값을 식별한다. 그러나 규칙을 내포한 자연어 문장의 불완전성으로 인해 변수가 명확하지 않거나 완전히 빠져 있는 경우가 흔히 발생하며, 이로 인해 온전한 형식의 규칙 생성이 어렵게 된다. 이 문제는 도메인 온톨로지의 생성을 통해 해결하였다. 이 온톨로지는 특정 도메인을 구성하고 있는 개념들간의 관계를 포함하고 있다는 점에서는 기존의 온톨로지와 유사하지만, 규칙을 완성하는 과정에서 사용된 개념들의 사용빈도를 기반으로 온톨로지의 구조를 변경하고, 결과적으로 더 정확한 규칙의 생성을 지원한다는 점에서 기존의 온톨로지와 차별화된다. 이상의 과정을 통해 식별된 규칙의 구성요소들은 제한된 언어집합 기법을 이용해 구체화된다. 본 연구에서 제안하는 방법론을 설명하기 위해 임의의 인터넷 쇼핑몰에서 수행되는 배송관련 웹 페이지를 선정하였다. 본 방법론은 XRML에서의 지식 습득 과정의 효율성 제고에 기여할 수 있을 것으로 기대된다.

  • PDF

Sign Language Transformation System based on a Morpheme Analysis (형태소분석에 기초한 수화영상변환시스템에 관한 연구)

  • Lee, Yong-Dong;Kim, Hyoung-Geun;Jeong, Woon-Dal
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.90-98
    • /
    • 1996
  • In this paper we have proposed the sign language transformation system for deaf based on a morpheme analysis. The proposed system extracts phoneme components and connection informations of the input character sequence by using a morpheme analysis. And then the sign image obtained by component analysis is correctly and automatically generated through the sign image database. For the effective sign language transformation, the language description dictionary which consists of a morpheme analysis part for analysis of input character sequence and sign language description part for reference of sign language pattern is costructed. To avoid the duplicating sign language pattern, the pattern is classified a basic, a compound and a similar sign word. The computer simulation shows the usefulness of the proposed system.

  • PDF