• 제목/요약/키워드: 단어 빈도-역문서 빈도

검색결과 17건 처리시간 0.026초

문서의 키워드 추출에 대한 신경망 접근 (Neural Based Approach to Keyword Extraction from Documents)

  • 조태호;서정현
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.317-319
    • /
    • 2000
  • 문서는 자연어로 구성된 비정형화된 데이터이다. 이를 처리하기 위하여 문서를 정형화된 데이터로 표현하여 저장할 필요가 있는데, 이를 문서 대용물(Document Surrogate)라 한다. 문서 대용물은 대표적으로 인덱싱 과정에 의해 추출된 단어 리스트를 나타낸다. 문서 내의 모든 단어가 내용을 반영하지 않는다. 문서의 내용을 반영하는 중요한 단어만을 선택할 필요가 있다. 이러한 단어를 키워드라 하며, 기존에는 단어의 빈도와 역문서 빈도(Inverse Document Frequency)에 근거한 공식에 의해 키워드를 선택하였다. 실제로 문서내 빈도와 역문서 빈도뿐만 아니라 제목에 포함 여부, 단어의 위치 등도 고려하여야 한다. 이러한 인자를 추가할 경우 이를 수식으로 표현하기에는 복잡하다. 이 논문에서는 이를 단어의 특징으로 추출하여 특징벡터를 형성하고 이를 학습하여 키워드를 선택하는 신경망 모델인 역전파의 접근을 제안한다. 역전파를 이용하여 키워드를 판별한 결과 수식에 의한 경우보다 그 성능이 향상되었음을 보여주고 있다.

  • PDF

텍스트 마이닝 기법을 이용한 경찰청 업무 트렌드 분석 (Analysis of the National Police Agency business trends using text mining)

  • 선현석;임창원
    • 응용통계연구
    • /
    • 제32권2호
    • /
    • pp.301-317
    • /
    • 2019
  • 최근 통계적인 기법을 이용하여 대량으로 생산되고 있는 텍스트 데이터를 통해 다양한 인사이트 발굴을 하기 위한 연구가 활발히 진행되고 있다. 본 연구는 경찰청에서 생산하는 텍스트 데이터를 통해 연도별 경찰청의 업무 트렌드를 파악하고, 각 지방청별로 생산되는 문서에서 주요 키워드를 파악하여 지방청 간의 업무 특성을 비교하고자 하였다. 의미 있는 결론을 도출하기 위해 각 자료 특성에 맞는 전처리 과정을 시행하고 문서별 단어 빈도수를 계산하였다. 문서에 나타난 키워드의 단순 출현 빈도로는 해당 키워드가 문서에서 갖는 중요도를 설명하기 힘들기 때문에 단어-역문서 가중치를 이용하여 각 단어에 대한 빈도수를 새롭게 계산하였고 단어의 문서별 및 연도별 빈도 비교를 위해 L2 정규화 기법을 이용하였다. 이러한 분석은 향후 경찰청 업무 개선 정책에 새롭게 활용될 수 있는 기초 자료로 사용될 수 있으며, 경찰청 업무 효율성 향상 및 청내 업무 개선 수요 파악을 위한 방법으로 활용될 수 있다.

에세이의 창의성 분류를 위한 어텐션과 역문서 빈도 기반의 자기부호화기 모델 (An AutoEncoder Model based on Attention and Inverse Document Frequency for Classification of Creativity in Essay)

  • 정세진;김덕기;온병원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.624-629
    • /
    • 2022
  • 에세이의 창의성을 자동으로 분류하는 기존의 주요 연구는 말뭉치에서 빈번하게 등장하지 않는 단어에 초점을 맞추어 기계학습을 수행한다. 그러나 이러한 연구는 에세이의 주제와 상관없이 단순히 참신한 단어가 많아 창의적으로 분류되는 문제점이 발생한다. 본 논문에서는 어텐션(Attention)과 역문서 빈도(Inverse Document Frequency; IDF)를 이용하여 에세이 내용 전달에 있어 중요하면서 참신한 단어에 높은 가중치를 두는 문맥 벡터를 구하고, 자기부호화기(AutoEncoder) 모델을 사용하여 문맥 벡터들로부터 창의적인 에세이와 창의적이지 않은 에세이의 특징 벡터를 추출한다. 그리고 시험 단계에서 새로운 에세이의 특징 벡터와 비교하여 그 에세이가 창의적인지 아닌지 분류하는 딥러닝 모델을 제안한다. 실험 결과에 따르면 제안 방안은 기존 방안에 비해 높은 정확도를 보인다. 구체적으로 제안 방안의 평균 정확도는 92%였고 기존의 주요 방안보다 9%의 정확도 향상을 보였다.

  • PDF

Suffix Tree를 이용한 웹 문서 클러스터의 제목 생성 방법 성능 비교 (Performance Comparison of Keyword Extraction Methods for Web Document Cluster using Suffix Tree Clustering)

  • 염기종;권영식
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2002년도 추계정기학술대회
    • /
    • pp.328-335
    • /
    • 2002
  • 최근 들어 인터넷 기술의 발달로 웹 상에 많은 자료들이 산재해 있습니다. 사용자가 원하는 정보를 검색하기 위해서 키워드 검색을 이용하고 있는데 이러한 키워드 검색은 사용자들이 입력한 단편적인 정보에 바탕하여 검색하고 검색된 결과들을 자체적인 기준으로 순위를 매겨 나열식으로 제시하고 있다. 이러한 경우 사용자들의 생각과는 다르게 결과가 제시될 수 있다. 따라서 사용자들의 검색 시간을 줄이고 편리하게 검색하기 위한 환경의 필요성이 높아지고 있다. 본 논문에서는 Suffix Tree 알고리즘을 사용하여 관련있는 문서들을 분류하고 각각의 분류된 클러스터에 제목을 생성하기 위하여 문서 빈도수, 단어 빈도수와 역문서 빈도수, 카이 검정, 공통 정보, 엔트로피 방법을 비교 평가하여 제목을 생성하는데 어떠한 방법이 가장 효과적인지 알아보기 위해 비교 평가해본 결과 문서빈도수가 TF-IDF보다 약 10%정도 성능이 좋은 결과를 보여주었다.

  • PDF

웹 크롤링에 의한 네이버 뉴스에서의 한국농수산대학 - 키워드 분석과 의미연결망분석 - (Korea National College of Agriculture and Fisheries in Naver News by Web Crolling : Based on Keyword Analysis and Semantic Network Analysis)

  • 주진수;이소영;김승희;박노복
    • 현장농수산연구지
    • /
    • 제23권2호
    • /
    • pp.71-86
    • /
    • 2021
  • 빅데이터 분석기술인 웹 크롤링 기술을 이용하여 네이버 뉴스 데이터 내에 담겨 있는 '한농대' 에 대한 이미지 단어를 추출하였다. 뉴스 기사에서 언급된 빈도에 따라 중요한 단어로 평가는 단어빈도 분석에서는 청년농업인을 육성하는 한농대의 특성을 잘 설명하는 '농업', '교육', '지원', '농업인', '청년', '대학', '사업', '농촌', '대표' 등의 단어가 자주 사용되는 것으로 나타났다. 또한 '디지털', '스마트', '드론', '졸업생', '창업', '새만금', '교육과정' 등 디지털 농업 전문 인재를 육성하기 위한 학교의 교육, 지원, 비전 등과 관련한 단어들이 추출되었다. 모든 기사 데이터의 단어 빈도(TF) 및 역 문서 빈도(IDF)를 이용한 TF-IDF 가중치의 전체 순위는 '농업인', '드론', '농림축산식품부', '전북', '청년농업인', '농업', '전주', '대학', '장치', '파종' 등의 단어가 한농대와 관련된 뉴스 기사에서 중요한 핵심어 역할을 하는 것으로 나타났다. 단어 빈도에서 '드론', '농림축산식품부', '전북', '청년농업인', '전주', '장치, '파종' 등은 순위가 매우 낮았으나 TF-IDF 가중치 순위에서는 한농대를 표현하는 핵심어로 나타났다. TF-IDF 평가에서 '교육', '지원', '청년', '사업', '농촌' 등의 키워드는 단어빈도가 높으면서 많은 문서에서 자주 등장하는 키워드로서 핵심어 역할은 크지 않은 것으로 나타났다. 단어 간 연계성을 파악하기 위한 의미연결망 분석에서 추출한 바이그램은 '청년'-'농업인', '디지털'-'농업', '영농'-'정착', '농업'-'농촌', '디지털'-'전환' 등의 순으로 빈도가 높게 나타났다. 중심성 지표로 키워드의 영향력을 평가한 결과 모든 지표에서 '농업'이 1위로 나타났으며, 2위에는 '농업인'(근접 중심성, 매개 중심성), '교육'(연결 중심성, 페이지랭크 중심성) 및 '미래'(고유벡터 중심성)으로 나타났다. 스피어먼 순위 상관계수에 의한 중심성 지표별 키워드의 순위의 유사성은 연결 중심성과 페이지랭크 중심성이 0.89 전후의 가장 높은 상관관계를 보였다. 이상으로 네이버 뉴스의 한농대 관련 기사에서 단어 빈도로 보면 '농업', '교육', '지원', '농업인', '청년', '대학', '사업', '농촌', '대표' 등이 중요한 단어로 평가되었으나, 문서빈도를 함께 고려한 평가에서는 '농업인', '드론', '농림축산식품부', '전북', '청년농업인', '농업', '전주', '대학', '장치', '파종' 등의 단어가 핵심어 역할을 하는 것으로 나타났다. 한편 단어나 문서의 빈도가 아니라 단어 간 네트워크 연계성을 고려한 중심성 분석에서는 연결 중심성과 페이지랭크 중심성에 의한 평가가 적합한 것으로 나타났으며, '농업', '교육', '미래', '농업인', '디지털', '지원', '활용' 등이 중심성이 강한 단어로 나타났다.

제목의 단어 가중치를 이용한 중등학교 공문서 자동분류시스템 (An Automatic Classification System of Official Documents in Middle Schools Using Term Weighting of Titles)

  • 강현희;진민
    • 정보교육학회논문지
    • /
    • 제7권2호
    • /
    • pp.219-226
    • /
    • 2003
  • 현재 일선 학교와 교육기관의 공문서 분류는 아직도 수작업으로 처리되고 있어 많은 시간이 소요된다. 이러한 문제점을 해결하기 위해 본 논문은 문서 제목의 단어 정보를 이용한 자동 문서 분류 방법을 제안한다. 먼저 기존 문서의 제목 단어 중에서 의미 있는 단어를 추출하여 각 단어에 대해 범주별로 역문헌 빈도(IDF) 가중치를 계산한 후 단어 가중치 사전을 구축한다. 문서의 분류 요구가 들어오면 구축된 단어 가중치 사전을 이용하여 문서 제목에 포함된 단어들의 범주별 가중치 합을 비교하여, 범주별 가중치 합이 최대인 범주로 문서를 분류한다. 실제 중등학교에서의 공문서를 대상으로 제안된 방법의 분류 성능을 평가하였다.

  • PDF

유즈넷 정보검색시스템에서 단어 가중치 적용방법에 관한연구 (Research of Term-Weighting Method in an Usenet Information Retrieval System)

  • 최재덕;최진석;박민식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (1)
    • /
    • pp.339-341
    • /
    • 1998
  • 다양한 정보교환 수단의 하나인 유즈넷은 방대한 정보량을 가진다. 사용자는 유즈넷에서 필요한 정보를 쉽게 찾지 못하므로 뉴스그룹 전체와 본문에서 정보 검색의 필요성을 인식하고 있다. 이 논문에서는 정보검색시스템을 유즈넷으로 확장시 단어 가중치 적용방법의 개선을 통해 검색효율을 향상시키고자 한다. 정보검색에서 단어의 중요도에 영향을 미치는 tf, idf 이외의 다른 요소인 카테고리빈도(category frequency, cf)를 활용하여 tf*idf방법에 역카테고리빈도(inverted categoary frequency, icf)를 고려한 유사도 계산 방법을 제시하고 이를 검증하였다. 실험 결과에서 상위 30위 내의 평균 적합문서의 수가 tf*{{{{ SQRT {idf$^2$+icf$^2$} }}}}방법이 tf*idf 방법보다 4.6% 향상됨을 알 수 있다.

문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출 (Sentence Cohesion & Subject driving Keywords Extraction for Document Classification)

  • 안희국;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

오픈 도메인 질의응답을 위한 질문-구절의 밀집 벡터 표현 연구 (A Study on the Dense Vector Representation of Query-Passage for Open Domain Question Answering)

  • 정민지;이새벽;김영준;허철훈;이충희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.115-121
    • /
    • 2022
  • 질문에 답하기 위해 관련 구절을 검색하는 기술은 오픈 도메인 질의응답의 검색 단계를 위해 필요하다. 전통적인 방법은 정보 검색 기법인 빈도-역문서 빈도(TF-IDF) 기반으로 희소한 벡터 표현을 활용하여 구절을 검색한다. 하지만 희소 벡터 표현은 벡터 길이가 길 뿐만 아니라, 질문에 나오지 않는 단어나 토큰을 검색하지 못한다는 취약점을 가진다. 밀집 벡터 표현 연구는 이러한 취약점을 개선하고 있으며 대부분의 연구가 영어 데이터셋을 학습한 것이다. 따라서, 본 연구는 한국어 데이터셋을 학습한 밀집 벡터 표현을 연구하고 여러 가지 부정 샘플(negative sample) 추출 방법을 도입하여 전이 학습한 모델 성능을 비교 분석한다. 또한, 대화 응답 선택 태스크에서 밀집 검색에 활용한 순위 재지정 상호작용 레이어를 추가한 실험을 진행하고 비교 분석한다. 밀집 벡터 표현 모델을 학습하는 것이 도전적인 과제인만큼 향후에도 다양한 시도가 필요할 것으로 보인다.

  • PDF

동시링크를 이용한 웹 문서 클러스터링 실험 (Clustering of Web Document Exploiting with the Co-link in Hypertext)

  • 김영기;이원희;권혁철
    • 한국도서관정보학회지
    • /
    • 제34권2호
    • /
    • pp.233-253
    • /
    • 2003
  • 인간은 지식의 조직을 통해 세계를 이해한다. 정보검색분야에서 연구되고 있는 정보의 조직화에는 분류와 클러스터링이라는 두 가지 유형이 있다. 분류는 미리 정의된 범주에 각 항목을 배정하는 행위인 반면, 클러스터링은 유사하거나 관련된 항목을 집단화함으로써 정보를 조직한다. 인터넷 정보자원의 조직은 웹 문서에 출현하는 단어들에서 키워드를 추출하여 역파일을 작성함으로써 검색에 활용하는 것이 일반적인 방법이다. 그러나 키워드의 출현 위치나 단어빈도를 통한 문서유사도 기법은 사용된 언어가 다르거나 대부분이 앵커텍스트만으로 구성되어 있는 대문페이지처럼 적용하기 어려운 경우가 많다. 이 연구는 계량정보학적 분석 기법 중에서 동시인용 기법을 웹 문서의 하이퍼링크에 적용하여, 웹 문서의 클러스터링 가능성을 실험한다.

  • PDF