The Journal of Korean Institute of Communications and Information Sciences
/
v.19
no.9
/
pp.1702-1709
/
1994
In the postprocessing of Hangul recognition system, the storage structure of contextual information is an important matter for the recognition rate and speed of the entire system. Trie in general is used to represent the context as word dictionary, but the memory space efficiency of the structure is low. Therefore we propose a new structure for word dictionary that has better space efficiency and the equivalent merits of trie. Because Hangul is a compound language, the language can be represented by phonemes or by characters. In the representation by phonemes(P-mode) the retrieval is fast, but the space efficiency is low. In the representation by characters(C-mode) the space efficiency is high, but the retrieval is slow. In this paper the two representation methods are combined to form a hybrid representation(H-mode). At first an optimal level for the combination is selected by two characteristic curves of node utilization and dispersion. Then the input words are represented with trie structure by P-mode from the first to the optimal level, and the rest are represented with sequentially linked list structure by C-mode. The experimental results for the six kinds of word set show that the proposed structure is more efficient. This result is based on the fact that the retrieval for H-mode is as fast as P-mode and the space efficiency is as good as C-mode.
Proceedings of the Acoustical Society of Korea Conference
/
spring
/
pp.183-186
/
2002
최근 음성인식의 인식 단위로서 문맥의존 음향 모델이 널리 사용되고 있다. 이는 음소의 음향학적 특징, 즉 선행 및 후행음소에 의한 중심 음소의 변이음 모델이 문맥독립 모델보다 좀 더 정확하게 모델링 될 수 있기 때문이다. 하지만 강건한 문맥의존 음향 모델을 작성하기 위해서는 모델 파라미터의 병합(tying)과 미지의 문맥(unseen context)의 처리를 위한 좀더 정교한 해결 방법이 필요하다. 따라서 본 논문에서는 이점을 고려하여 음향학적 특징과 언어학적 특징을 결합하여 상태 분할을 수행할 수 있도록 SSS(Successive State Splitting) 알고리즘의 문맥 방향 상태 분할에 음소결정트리를 접목한 HM-Net(Hidden Markov Network) 구조 결정법을 도입하였다. 또한 HM-Net은 연속적인 상태 분할에 의해 한국어에서 많이 발생하는 변이음들을 효과적으로 모델링 할 수 있다는 점을 고려하여 본 연구실에서 기존에 사용하던 48 유사음소 단위에서 문맥의존 음향 모델 작성에 불필요한 변이음을 제거하여 39 유사음소 단위를 재 정의하였다. 도입한 방법과 새로 정의한 유사음소 단위의 유효성을 확인하기 위해 고립 단어, 4연속 숫자음, 연속 음성인식에 대해 인식 실험을 수행한 결과, 모든 실험에서 재 정의한 39 유사음소 단위가 문맥종속형 HM-Net 음향모델을 이용한 한국어 음성인식에 효과적임을 확인할 수 있었다. 특히 연속 음성인식 실험의 경우, 기존의 48 유사음소 단위보다 평균 $15.08\%$의 인식률 향상이 있었다.
Cognitive decline in aging is known to yield detrimental effects in syntactic processing and working memory capacity is the most crucial cognitive function in understanding older adults' sentence processing skills. This study examined how young and older adults utilize contextual information while resolving NP-attached Ps vis word-by-word self-paced reading paradigm. In addition, the study asked which cognitive functions play roles on the use of a NP-supporting context during processing of NP-attached PP. When NP-attached PP was presented in a supporting context, both age groups performed faster than in the null context condition. Among different cognitive functions, alternating attention skills were correlated with the ability utilizing context during syntactic ambiguity resolution and working memory capacity was not found to be crucial for this study. In conclusion, this study suggests that aging does not always affect older adults' syntactic processing negatively and relevant cognitive function may vary depending on the type of syntactic structure.
Journal of the Korea Institute of Information and Communication Engineering
/
v.18
no.1
/
pp.25-31
/
2014
Korean grammar checkers typically detect context-dependent errors by employing heuristic rules; these rules are formulated by language experts and consisted of lexical items. Such grammar checkers, unfortunately, show low recall which is detection ratio of errors in the document. In order to resolve this shortcoming, a new error-decision rule-generalization method that utilizes the existing KorLex thesaurus, the Korean version of Princeton WordNet, is proposed. The method extracts noun classes from KorLex and generalizes error-decision rules from them using the Tree Cut Model and information-theory-based MDL (minimum description length).
This paper presents the text-prompt method to overcome the weakness of text-dependent and text-independent speaker recognition. Enhanced dynamic time warping for speaker recognition algorithm is applied. For the real-time processing, we use a simple algorithm for end-point detection without increasing computational complexity. The test shows that the weighted-cepstrum is most proper for speaker recognition among various speech parameters. As the experimental results of the proposed algorithm for three prompt words, the speaker identification error rate is 0.02%, and when the threshold is set properly, false rejection rate is 1.89%, false acceptance rate is 0.77% and verification total error rate is 0.97% for speaker verification.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.237-240
/
2020
사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.
The Journal of Korean Association of Computer Education
/
v.5
no.2
/
pp.11-19
/
2002
In this paper, we present a simple statistical method for performing word sense disambiguation(WSD), specially for Korean transitive verbs, based on a supervised learning algorithm. This approach combines a set of indicators based on syntactic relations between surrounding words and an ambiguous verb. Experiments with 10 Korean verbs show that accuracy performance of our WSD method using indicators based on syntactic relations is 27% higher than the baseline performance. Moreover, our method using weighting mechanism based on each indicator type is 12% higher than a method which uses only an unordered set of surrounding words in the context.
Korean Morphological Analysis is a difficult process. Because Korean is an agglutinative language, one of the most important processes in Morphological Analysis is Morpheme Recovery. There are some methods using Heuristic rules and Pre-Analyzed Partial Words that were examined for this process. These methods have performance limits as a result of not using contextual information. In this study, we built a Korean morpheme recovery system using deep learning, and this system used word embedding for the utilization of contextual information. In '들/VV' and '듣/VV' morpheme recovery, the system showed 97.97% accuracy, a better performance than with SVM(Support Vector Machine) which showed 96.22% accuracy.
Annual Conference on Human and Language Technology
/
1999.10e
/
pp.359-367
/
1999
형태소를 공유하고 있는 어휘가 심성 어휘집(mental lexicon)에 어떻게 저장되어 있고 어떻게 어휘 접근되는지에 관하여 여러 설명이 제기되었다 첫 번째 가설은 형태소 공유 어휘는 심성 어휘집에 모두 같은 어근 혹은 어간을 중심으로 저장되어 있다는 것이다. 두 번째 가설은 어간이나 어근으로의 분석을 통해 활용된 단어를 이해하는 것이 아니라 일단 활용된 형태의 어휘를 심성 어휘집에서 찾고, 만일 해당되는 것이 발견되면, 그 활용된 어절의 이해가 끝나게 되고, 만일에 해당되는 것이 심성 어휘집에 존재하지 않는 경우에만 부수적인 과정으로 구성 형태소로의 분석이 이루어진다는 것이다. 세 번째 가설은 어휘의 품사, 어휘의 빈도, 형태소 활용의 규칙성 등에 따라 구성 형태소로의 분석을 통해 활용된 단어를 이해하거나 아니면 활용된 어휘의 직접적인 접근을 통해 활용된 단어를 이해한다는 것이다. 본 연구에서는 이 세 종류의 가설 중에 어느 가설이 옳은 것인지를 조사하기 위해, "먹은" 흑은 "쥐어"와 같은 한국어 어절을 이용하여 형태소 표상 양식과 이해 과정을 다루었다. 본 연구의 목적을 위해 점화 어휘 판단 과제(primed-lexical decision task)를 사용하였다. 실험 1은 "먹은"처럼 동사 "먹다"로도 해석이 가능하고 명사 "먹"으로도 가능한 중의적 어절을 점화 문자열로 제시하고 이 문자열이 두 의미와 관련된 목표 단어 재인에 어떤 영향을 끼치는지를 조사하였다. 만일에 "먹"이라는 어근 혹은 어간으로의 분석을 통해 이 어절을 이해한다면 두 종류의 의미와 관련된 조건 모두에서 촉진적 점화 효과(facilitatory priming effect)가 나타날 것이고, 어절 전체로의 어휘 접근 과정이 일어난다면 사용빈도에서 높은 동사 뜻과 관련된 조건에서만 촉진적 점화 효과가 나타날 것이다. 실험 1의 결과는 두 종류의 의미가 모두 활성화되는 것을 보여 주었다. 즉, "먹은"과 간은 어절 이해는 구성 형태소로의 분석과 구성 형태소 어휘 접근을 통해 어절 이해가 이루어진다는 가설을 지지하고 있다. 실험 2에서는 실험 1과 다르게 한 뜻으로만 안일 수밖에 없는 "쥐어"와 같은 어절을 사용하여 이런 경우에도(즉, 어절의 문맥이 특정 뜻으로 한정하는 경우) 구성 형태소로의 분석 과정이 일어나는지를 조사하였다. 실험 2의 결과는 실험 1의 결과와는 다르게 어간의 한가지 의미와 관련된 조건만 촉진적 점화 효과가 나타나는 것을 보여주었다. 특히, 실험 2에서 SOA가 1000msec일 경우, 두 의미의 활성화가 나타나는 것을 보여주었는데, 이 같은 결과는 어절 문맥이 특정한 의미로 한정시킬 경우는 심성어휘집에 활용형태로 들어있다는 것이다. 또한 명칭성 실어증 환자의 경우에는 즉시적 점화과제에서는 일반인과 같은 형태소 처리과정을 보였으나, 그이후의 처리과정이 일반인과 다른 형태를 보였다. 실험 1과 실험 2의 결과는 한국어 어절 분석이 구문분석 또는 활용형태를 통해 어휘 접근되는 가설을 지지하고 있다. 또 명칭성 실어증 환자의 경우에는 지연된 점화과제에서 형태소 처리가 일반인과 다르다는 것이 밝혀졌다. 이 결과가 옳다면 한국의 심성 어휘집은 어절 문맥에 따라서 어간이나 어근 또는 활용형 그 자체로 이루어져 있을 것이다.
Kim, Jungwook;Whang, Taesun;Kim, Bongsu;Lee, Saebyeok
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.509-513
/
2021
개체명 인식이란, 문장에서 인명, 지명, 기관명, 날짜, 시간 등의 고유한 의미의 단어를 찾아서 미리 정의된 레이블로 부착하는 것이다. 일부 단어는 문맥에 따라서 인명 혹은 기관 등 다양한 개체명을 가질 수 있다. 이로 인해, 개체명에 대한 중의성을 가지고 있는 단어는 개체명 인식 성능에 영향을 준다. 본 논문에서는 개체명에 대한 중의성을 최소화하기 위해 사전을 구축하여 ELECTRA 기반 모델에 적용하는 학습 방법을 제안한다. 또한, 개체명 인식 데이터의 일반화를 개선시키기 위해 동적 마스킹을 이용한 데이터 증강 기법을 적용하여 실험하였다. 실험 결과, 사전 기반 모델에서 92.81 %로 성능을 보였고 데이터 증강 기법을 적용한 모델은 93.17 %로 높은 성능을 보였다. 사전 기반 모델에서 추가적으로 데이터 증강 기법을 적용한 모델은 92.97 %의 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.