Semantic search is known as a series of activities and techniques to improve the search accuracy by clearly understanding users' search intent without big cognitive efforts. Usually, semantic search engines requires ontology and semantic metadata to analyze user queries. However, building a particular ontology and semantic metadata intended for large amounts of data is a very time-consuming and costly task. This is why commercialization practices of semantic search are insufficient. In order to resolve this problem, we propose a novel semantic search method which takes advantage of our previous semantic tensor space model. Since each term is represented as the 2nd-order 'document-by-concept' tensor (i.e., matrix), and each concept as the 2nd-order 'document-by-term' tensor in the model, our proposed semantic search method does not require to build ontology. Nevertheless, through extensive experiments using the OHSUMED document collection and SCOPUS journal abstract data, we show that our proposed method outperforms the vector space model-based search method.
Journal of the Korea Society of Computer and Information
/
v.18
no.10
/
pp.173-182
/
2013
Typographical mistakes made in the writing process of drafts of electronic documents are more common than any other type of errors. The majority of these errors caused by mistyping are regarded as consequently still typo-errors, but a considerable number of them are developed into the grammatical errors and the semantic errors. Pseudo semantic errors among these errors due to typographical errors have more noticeable peculiarities than pure semantic errors between senses of surrounding context words within a sentence. These semantic errors can be detected and corrected by simple algorithm based on the co-occurrence frequency because of their prominent contextual discrepancy. I propose a method for detection and correction based on the co-occurrence frequency in order to detect semantic errors due to typo-errors. The co-occurrence frequency in proposed method is counted for only words with immediate dependency relation, and the cosine similarity measure is used in order to detect pseudo semantic errors. From the presented experimental results, the proposed method is expected to help improve the detecting rate of overall proofreading system by about 2~3%.
The Journal of the Korea institute of electronic communication sciences
/
v.7
no.4
/
pp.783-787
/
2012
It is not easy to find out syntactic error in a spelling checker systems of Korean, because the spelling checker is generally to correct each phrase and it cannot check the errors of contextual ill-matched words. Spelling checker system tests errors based on a words. Disambiguation of lexical ambiguities is important in natural language processing. Its outputs is used in syntactic analysis. For accurate analysis of a sentence, syntactic analysis system must find out the ambiguity of morphemes in a word. In this paper, we suggest several rules to resolve the ambiguities of morphemes in a word. Using these methods, we can reduce many lexical ambiguities in Korean.
Proceedings of the Korea Information Processing Society Conference
/
2005.05a
/
pp.1027-1030
/
2005
기존 의미커널을 적용한 주관식 채점 시스템은 여러 답안과 말뭉치에서 추출한 색인어들과의 상관관계를 벡터방식으로 표현하여 자연어 처리에 대한 문제를 해결하려 하였다. 본 논문에서는 기존 시스템의 답안 및 색인어의 표현 한계로 인한 유사도 계산오차 가능성에 대한 문제를 해결하고자 시소러스를 이용한 임의 추출 방식의 답안 확장을 적용하였다. 서술형 주관식 평가에서는 문장의 문맥보다는 사용된 어휘에 채점가중치가 높다는 점을 착안, 출제자와 수험자 모두의 답안을 동의어, 유의어 그룹으로 확장하여 채점 성능을 향상시키려 하였다. 우선 두 답안을 형태소 분석기를 이용해 색인어를 추출한 후 워드넷을 이용하여 동의어, 유의어 그룹으로 확장한다. 이들을 말뭉치 색인을 이용하여 단어들 간 상관관계를 측정하기 위한 벡터로 구성하고 의미 커널을 적용하여 정답 유사도를 계산하였다. 출제자의 채점결과와 각 모델의 채점 점수의 상관계수 계산 결과 ELSA 모델이 가장 높은 유사도를 나타내었다..
This study was aim to compare the phonological error patterns and PCC(Percentage of Correct Consonants) derived from the single word and spontaneous speech contexts of the speech sound disorders with unknown origin(SSD). The present study suggest that the development phonological error patterns and non-developmental error patterns of the target children, in according to speech context. The subjects were 15 children with SSD up to the age of 5 from 3 years of age. This research use 37 words of APAC(Assessment of Phonology & Articulation for Children) in the single word context and 100 eojeol in the spontaneous speech context. There was no difference of PCC between the single word and the spontaneous speech contexts. Significantly different developmental phonological error patterns between the single word and the spontaneous speech contexts were syllable deletion, word-medial onset deletion, liquid deletion, gliding, affrication, fricative other error, tensing, regressive assimilation. Significantly different non-developmental phonological error patterns were backing, addtion of phoneme, aspirating. The study showed that there was no difference of PCC between elicited single word and spontaneous conversational context. And there were some different phonological error patterns derived from the two contexts of the speech sound disorders. The more important interventions target is the error patterns of the spontaneous speech contexts for the immediate generalization and rising overall intelligibility.
Elliptical and anaphoric utterances occur frequently during spoken dialogue. Because discourse analysis rests on the basic premise that linguistic items cannot be understood without reference to the context, ellipsis and anaphora resolution plays an important role in discourse analysis. In this paper, we present a spoken dialogue system improving the robustness at dialogue level based on discourse analysis, such as anaphora and ellipsis resolution. The applicability and effectiveness of the proposed method is evaluated in the TV domain.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.553-558
/
2022
최근, 구어체 데이터에 대한 자연어처리 응용 기술이 늘어나고 있다. 구어체 문장은 소통 방식 등의 형태로 인해 정제되지 않은 형태로써, 필연적으로 띄어쓰기, 문장 왜곡 등의 다양한 문법적 오류를 포함한다. 자동 문법 교정기는 이러한 구어체 데이터의 전처리 및 일차적 정제 도구로써 활용된다. 사전학습된 트랜스포머 기반 문장 생성 연구가 활발해지며, 이를 활용한 자동 문법 교정기 역시 연구되고 있다. 트랜스포머 기반 문장 교정 시, 교정의 필요 유무를 잘못 판단하여, 오류가 생기게 된다. 이러한 오류는 대체로 문맥에 혼동을 주는 단어의 등장으로 인해 발생한다. 본 논문은 트랜스포머 기반 문법 교정기의 오류를 보강하기 위한 방식으로써, 필요하지 않은 형태소인 고유명사를 마스킹한 입력 및 출력 문장틀 형태를 제안하며, 이러한 문장틀에 대해 고유명사를 복원한 경우 성능이 증강됨을 보인다.
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.320-323
/
2022
상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.
Park, Seo-Yoon;Kang, Ye-Jee;Kang, Hye-Rin;Jang, Yeon-Ji;Kim, Han-Saem
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.548-553
/
2020
우리가 쓰는 일상 언어 중에는 언어적 직관이 없는 사람은 의미 파악이 힘든 관용표현이 존재한다. 관용표현을 이해하기 위해서는 표현에 대한 형태적, 의미적 이해가 수반되어야 하기 때문이다. 기계도 마찬가지로 언어적 직관이 없기 때문에 관용표현에 대한 자연어 처리에는 어려움이 따른다. 특히 일반표현과 중의성 관계에 있는 관용표현의 특성이 고려되지 않은 채 문자적으로만 분석될 위험성이 높다. 본 연구에서는 '관용표현은 주변 문맥과의 관련성이 떨어진다'라는 가정을 중심으로 워드 임베딩을 활용한 관용표현과 일반표현에 대한 구분을 시도하였다. 실험은 4개 표현에 대해 이루어 졌으며 Skip-gram, Fasttext를 활용한 방법을 통해 관용표현은 주변 단어들과의 유사성이 떨어짐을 확인하였다.
Annual Conference on Human and Language Technology
/
2020.10a
/
pp.401-407
/
2020
뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.