• Title/Summary/Keyword: 단어 문맥

Search Result 211, Processing Time 0.021 seconds

A Tensor Space Model based Semantic Search Technique (텐서공간모델 기반 시멘틱 검색 기법)

  • Hong, Kee-Joo;Kim, Han-Joon;Chang, Jae-Young;Chun, Jong-Hoon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.4
    • /
    • pp.1-14
    • /
    • 2016
  • Semantic search is known as a series of activities and techniques to improve the search accuracy by clearly understanding users' search intent without big cognitive efforts. Usually, semantic search engines requires ontology and semantic metadata to analyze user queries. However, building a particular ontology and semantic metadata intended for large amounts of data is a very time-consuming and costly task. This is why commercialization practices of semantic search are insufficient. In order to resolve this problem, we propose a novel semantic search method which takes advantage of our previous semantic tensor space model. Since each term is represented as the 2nd-order 'document-by-concept' tensor (i.e., matrix), and each concept as the 2nd-order 'document-by-term' tensor in the model, our proposed semantic search method does not require to build ontology. Nevertheless, through extensive experiments using the OHSUMED document collection and SCOPUS journal abstract data, we show that our proposed method outperforms the vector space model-based search method.

A Method for Detection and Correction of Pseudo-Semantic Errors Due to Typographical Errors (철자오류에 기인한 가의미 오류의 검출 및 교정 방법)

  • Kim, Dong-Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.173-182
    • /
    • 2013
  • Typographical mistakes made in the writing process of drafts of electronic documents are more common than any other type of errors. The majority of these errors caused by mistyping are regarded as consequently still typo-errors, but a considerable number of them are developed into the grammatical errors and the semantic errors. Pseudo semantic errors among these errors due to typographical errors have more noticeable peculiarities than pure semantic errors between senses of surrounding context words within a sentence. These semantic errors can be detected and corrected by simple algorithm based on the co-occurrence frequency because of their prominent contextual discrepancy. I propose a method for detection and correction based on the co-occurrence frequency in order to detect semantic errors due to typo-errors. The co-occurrence frequency in proposed method is counted for only words with immediate dependency relation, and the cosine similarity measure is used in order to detect pseudo semantic errors. From the presented experimental results, the proposed method is expected to help improve the detecting rate of overall proofreading system by about 2~3%.

A Study on Lexical Ambiguity Resolution of Korean Morphological Analyzer (형태소 분석기의 어휘적 중의성 해결에 관한 연구)

  • Park, Yong-Uk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.4
    • /
    • pp.783-787
    • /
    • 2012
  • It is not easy to find out syntactic error in a spelling checker systems of Korean, because the spelling checker is generally to correct each phrase and it cannot check the errors of contextual ill-matched words. Spelling checker system tests errors based on a words. Disambiguation of lexical ambiguities is important in natural language processing. Its outputs is used in syntactic analysis. For accurate analysis of a sentence, syntactic analysis system must find out the ambiguity of morphemes in a word. In this paper, we suggest several rules to resolve the ambiguities of morphemes in a word. Using these methods, we can reduce many lexical ambiguities in Korean.

Design and Implementation of Short-Essay Marking System by Using Semantic Kernel and WordNet (의미 커널과 워드넷을 이용한 주관식 문제 채점 시스템의 설계 및 구현)

  • Cho, Woo-Jin;Chu, Seung-Woo;O, Jeong-Seok;Kim, Han-Saem;Kim, Yu-Seop;Lee, Jae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.1027-1030
    • /
    • 2005
  • 기존 의미커널을 적용한 주관식 채점 시스템은 여러 답안과 말뭉치에서 추출한 색인어들과의 상관관계를 벡터방식으로 표현하여 자연어 처리에 대한 문제를 해결하려 하였다. 본 논문에서는 기존 시스템의 답안 및 색인어의 표현 한계로 인한 유사도 계산오차 가능성에 대한 문제를 해결하고자 시소러스를 이용한 임의 추출 방식의 답안 확장을 적용하였다. 서술형 주관식 평가에서는 문장의 문맥보다는 사용된 어휘에 채점가중치가 높다는 점을 착안, 출제자와 수험자 모두의 답안을 동의어, 유의어 그룹으로 확장하여 채점 성능을 향상시키려 하였다. 우선 두 답안을 형태소 분석기를 이용해 색인어를 추출한 후 워드넷을 이용하여 동의어, 유의어 그룹으로 확장한다. 이들을 말뭉치 색인을 이용하여 단어들 간 상관관계를 측정하기 위한 벡터로 구성하고 의미 커널을 적용하여 정답 유사도를 계산하였다. 출제자의 채점결과와 각 모델의 채점 점수의 상관계수 계산 결과 ELSA 모델이 가장 높은 유사도를 나타내었다..

  • PDF

A comparison of phonological error patterns in the single word and spontaneous speech of children with speech sound disorders (말소리장애 아동의 단어와 자발화 문맥의 음운오류패턴 비교)

  • Park, kayeon;Kim, Soo-Jin
    • Phonetics and Speech Sciences
    • /
    • v.7 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • This study was aim to compare the phonological error patterns and PCC(Percentage of Correct Consonants) derived from the single word and spontaneous speech contexts of the speech sound disorders with unknown origin(SSD). The present study suggest that the development phonological error patterns and non-developmental error patterns of the target children, in according to speech context. The subjects were 15 children with SSD up to the age of 5 from 3 years of age. This research use 37 words of APAC(Assessment of Phonology & Articulation for Children) in the single word context and 100 eojeol in the spontaneous speech context. There was no difference of PCC between the single word and the spontaneous speech contexts. Significantly different developmental phonological error patterns between the single word and the spontaneous speech contexts were syllable deletion, word-medial onset deletion, liquid deletion, gliding, affrication, fricative other error, tensing, regressive assimilation. Significantly different non-developmental phonological error patterns were backing, addtion of phoneme, aspirating. The study showed that there was no difference of PCC between elicited single word and spontaneous conversational context. And there were some different phonological error patterns derived from the two contexts of the speech sound disorders. The more important interventions target is the error patterns of the spontaneous speech contexts for the immediate generalization and rising overall intelligibility.

Discourse Analysis for Robust Spoken Dialogue System (강건한 음성 대화 시스템을 위한 담화분석 기술)

  • Lee, Chung-Hee;Jang, Myung-Gil;Oh, Hyo-Jung;Seo, Young-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.10
    • /
    • pp.1005-1009
    • /
    • 2010
  • Elliptical and anaphoric utterances occur frequently during spoken dialogue. Because discourse analysis rests on the basic premise that linguistic items cannot be understood without reference to the context, ellipsis and anaphora resolution plays an important role in discourse analysis. In this paper, we present a spoken dialogue system improving the robustness at dialogue level based on discourse analysis, such as anaphora and ellipsis resolution. The applicability and effectiveness of the proposed method is evaluated in the TV domain.

Template Constrained Sequence to Sequence based Conversational Utterance Error Correction Method (문장틀 기반 Sequence to Sequence 구어체 문장 문법 교정기)

  • Jeesu Jung;Seyoun Won;Hyein Seo;Sangkeun Jung;Du-Seong Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.553-558
    • /
    • 2022
  • 최근, 구어체 데이터에 대한 자연어처리 응용 기술이 늘어나고 있다. 구어체 문장은 소통 방식 등의 형태로 인해 정제되지 않은 형태로써, 필연적으로 띄어쓰기, 문장 왜곡 등의 다양한 문법적 오류를 포함한다. 자동 문법 교정기는 이러한 구어체 데이터의 전처리 및 일차적 정제 도구로써 활용된다. 사전학습된 트랜스포머 기반 문장 생성 연구가 활발해지며, 이를 활용한 자동 문법 교정기 역시 연구되고 있다. 트랜스포머 기반 문장 교정 시, 교정의 필요 유무를 잘못 판단하여, 오류가 생기게 된다. 이러한 오류는 대체로 문맥에 혼동을 주는 단어의 등장으로 인해 발생한다. 본 논문은 트랜스포머 기반 문법 교정기의 오류를 보강하기 위한 방식으로써, 필요하지 않은 형태소인 고유명사를 마스킹한 입력 및 출력 문장틀 형태를 제안하며, 이러한 문장틀에 대해 고유명사를 복원한 경우 성능이 증강됨을 보인다.

  • PDF

Domain adaptation of Korean coreference resolution using continual learning (Continual learning을 이용한 한국어 상호참조해결의 도메인 적응)

  • Yohan Choi;Kyengbin Jo;Changki Lee;Jihee Ryu;Joonho Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.320-323
    • /
    • 2022
  • 상호참조해결은 문서에서 명사, 대명사, 명사구 등의 멘션 후보를 식별하고 동일한 개체를 의미하는 멘션들을 찾아 그룹화하는 태스크이다. 딥러닝 기반의 한국어 상호참조해결 연구들에서는 BERT를 이용하여 단어의 문맥 표현을 얻은 후 멘션 탐지와 상호참조해결을 동시에 수행하는 End-to-End 모델이 주로 연구가 되었으며, 최근에는 스팬 표현을 사용하지 않고 시작과 끝 표현식을 통해 상호참조해결을 빠르게 수행하는 Start-to-End 방식의 한국어 상호참조해결 모델이 연구되었다. 최근에 한국어 상호참조해결을 위해 구축된 ETRI 데이터셋은 WIKI, QA, CONVERSATION 등 다양한 도메인으로 이루어져 있으며, 신규 도메인의 데이터가 추가될 경우 신규 데이터가 추가된 전체 학습데이터로 모델을 다시 학습해야 하며, 이때 많은 시간이 걸리는 문제가 있다. 본 논문에서는 이러한 상호참조해결 모델의 도메인 적응에 Continual learning을 적용해 각기 다른 도메인의 데이터로 모델을 학습 시킬 때 이전에 학습했던 정보를 망각하는 Catastrophic forgetting 현상을 억제할 수 있음을 보인다. 또한, Continual learning의 성능 향상을 위해 2가지 Transfer Techniques을 함께 적용한 실험을 진행한다. 실험 결과, 본 논문에서 제안한 모델이 베이스라인 모델보다 개발 셋에서 3.6%p, 테스트 셋에서 2.1%p의 성능 향상을 보였다.

  • PDF

Korean Idiom Classification Using Word Embedding (워드 임베딩을 활용한 관용표현 인식 연구)

  • Park, Seo-Yoon;Kang, Ye-Jee;Kang, Hye-Rin;Jang, Yeon-Ji;Kim, Han-Saem
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.548-553
    • /
    • 2020
  • 우리가 쓰는 일상 언어 중에는 언어적 직관이 없는 사람은 의미 파악이 힘든 관용표현이 존재한다. 관용표현을 이해하기 위해서는 표현에 대한 형태적, 의미적 이해가 수반되어야 하기 때문이다. 기계도 마찬가지로 언어적 직관이 없기 때문에 관용표현에 대한 자연어 처리에는 어려움이 따른다. 특히 일반표현과 중의성 관계에 있는 관용표현의 특성이 고려되지 않은 채 문자적으로만 분석될 위험성이 높다. 본 연구에서는 '관용표현은 주변 문맥과의 관련성이 떨어진다'라는 가정을 중심으로 워드 임베딩을 활용한 관용표현과 일반표현에 대한 구분을 시도하였다. 실험은 4개 표현에 대해 이루어 졌으며 Skip-gram, Fasttext를 활용한 방법을 통해 관용표현은 주변 단어들과의 유사성이 떨어짐을 확인하였다.

  • PDF

Sentence Interaction-based Document Similarity Models for News Clustering (뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들)

  • Choi, Seonghwan;Son, Donghyun;Lee, Hochang
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF