음성인식에서 TMHMM(Tied Mixture Hidden Markov Model)은 자유 매개변수의 수를 감소시키기 위한 좋은 접근이지만, GPDF(Gaussian Probability Density Function) 군집화 오류에 의해 음성인식의 오류를 발생시켰다. 본 논문은 TMHMM에서 발생하는 군집화 오류를 최소화하기 위하여 HCNN(Homogeneous Centroid Neural Network) 군집화 알고리즘을 제안한다. 제안된 알고리즘은 CNN(Centroid Neural Network)을 TMHMM상의 음향 특징벡터에 활용하였으며, 다른 상태에 소속된 확률밀도가 서로 겹쳐진 형태의 이질군집 지역에 더 많은 코드벡터를 할당하기 위해서 본 논문에서 새로 제안이 제안되는 이질성 거리척도를 사용 하였다. 제안된 알고리즘을 한국어 고립 숫자단어의 인식문제에 적용한 결과, 기존 K-means 알고리즘이나 CNN보다 각각 14.63%, 9,39%의 오인식률의 감소를 얻을 수 있었다.
다수의 지역 특징들을 취합하여 하나의 벡터로 표현하는 것은 이미지 검색의 핵심 기술이다. 이 과정에서 경사도 기반 특징에 비해 수십 배 빠르게 추출되는 2진 특징이 활용된다면 이미지 검색의 고속화가 가능하다. 이를 위해서는 2진 특징들을 군집하여 2진 시각 단어를 생성하는 기법에 대한 연구가 선행되어야 한다. 기존의 경사도 기반 특징들을 군집하는 전통적인 방식으로는 2진 특징들을 군집할 수 없기 때문이다. 이를 위해 본 논문은 2진 특징들을 군집하여 2진 시각 단어를 생성하는 기법들에 대해 연구한다. 실험을 통해 2진 특징의 활용이 이미지 검색에 미치는 정확도와 연산효율 사이의 상충관계에 대해 분석한 후, 제안한 기법들을 비교한다. 본 연구는 고속 이미지 검색을 필요로 하는 모바일 응용, 리얼 타임 응용, 웹 스케일 응용 등에 활용될 것으로 기대된다.
범주 불균형은 분류 모델이 다수 범주에 편향되게 학습되어 소수 범주에 대한 분류 성능을 떨어뜨리는 문제를 야기한다. 언더 샘플링 기법은 다수 범주 데이터의 수를 줄여 소수 범주와 균형을 이루게하는 대표적인 불균형 해결 방법으로, 텍스트 도메인에서의 기존 언더 샘플링 연구에서는 단어 임베딩과 랜덤 샘플링과 같은 비교적 간단한 기법만이 적용되었다. 본 논문에서는 트랜스포머 기반 문장 임베딩과 군집화 기반 샘플링 방법을 통해 텍스트 데이터의 정보 손실을 최소화하는 언더샘플링 방법을 제안한다. 제안 방법의 검증을 위해, 감성 분석 실험에서 제안 방법과 랜덤 샘플링으로 추출한 훈련 세트로 모델을 학습하고 성능을 비교 평가하였다. 제안 방법을 활용한 모델이 랜덤 샘플링을 활용한 모델에 비해 적게는 0.2%, 많게는 2.0% 높은 분류 정확도를 보였고, 이를 통해 제안하는 군집화 기반 언더 샘플링 기법의 효과를 확인하였다.
멀티미디어 정보환경의 발전과 다양한 요구를 지닌 정보이용자는 멀티미디어의 접근과 이용에 있어서 기존 정보검색 패러다임에서 중요시하지 않았던 요소를 사용하는 추세이다. 특히 이미지를 포함한 멀티미디어의 감정 접근과 이용은 다양한 정보환경에서 이루어지고 있다. 따라서 효율적으로 추상적 개념인 감정을 이용자에게 접근점으로 제공할 필요성이 증가한다. 본 연구는 감정으로 접근이 가능한 게티 이미지 뱅크의 이미지를 5가지 기본 감정으로 검색하여 부여된 색인어 총 22,675건을 추출하였다. 추출된 색인어는 전체감정, 긍정감정, 부정감정의 세 가지 데이터셋으로 구분하여 분석되었다. 분석을 위해서는 동시출현단어행렬로 작성되어 가중 네트워크와 군집화기법으로 시각화되었다. 분석결과를 살펴보면, 전체감정은 대분류로써 긍정감정, 부정감정, 가족의 3개 군집과 하위 20개의 군집으로 나타났다. 긍정감정은 10개의 군집이며, 부정감정은 10개의 군집으로 구성되었다. 이와 같은 가중 네트워크와 군집구성 분석을 통해, 세 가지 중요한 차세대 멀티미디어 검색을 위한 요소로 논의하였다. 첫째는 이미지 감정 표현을 위한 인물 색인어 특성이다. 둘째는 명시적 단어와 감정을 표현하는 함축적 단어와의 네트워크 구성을 통해서 상대적으로 색인이 용이한 명시적 단어만으로도 함축적 단어 추론 가능성이다. 셋째는 감정으로 표현하는 함축적 단어의 유사어/동의어로의 확장은 이용자 중심의 접근을 제공하는 측면에서 중요하다는 점이다.
본 논문은 낚시성 기사 제목과 비낚시성 기사 제목을 판별하기 위한 시스템을 제시한다. 서포트 벡터 머신(SVM)을 이용하여 기사 제목을 분류하며, 분류하는 기준은 딥러닝 기법중의 하나인 워드임베딩(Word Embedding), 군집화 알고리즘 중 하나인 K 평균 알고리즘(K-means)을 이용한다. 자질로서 기사 제목의 단어를 사용하였으며, 정확도가 83.78%이다. 결론적으로 낚시성 기사 제목에는 낚시를 유도하는 특별한 단어들이 존재함을 알 수 있다.
비정형 데이터의 대표적인 형태 중 하나인 텍스트 데이터 기계학습은 다양한 산업군에서 활용되고 있다. NOTAM 은 하루에 수 천개씩 생성되는 항공전문으로써 현재는 사람의 수작업으로 분석하고 있다. 기계학습을 통해 업무 효율성을 기대할 수 있는 반면, 축약어가 혼재된 단문이라는 데이터의 특성상 일반적인 분석에 어려움이 있다. 본 연구에서는, 데이터의 크기가 크지 않고, 축약어가 혼재되어 있으며, 문장의 길이가 매우 짧은 문서들을 군집화하는 방법을 제안한다. 주제를 기준으로 문서를 분류하는 LDA 와, 단어를 k 차원의 벡터공간에 표현하는 Word2Vec 를 활용하여 잡음이 포함된 단문 데이터에서도 효율적으로 문서를 군집화 할 수 있다.
본 논문은 기존의 TextRank 알고리즘에 상호정보량 척도를 결합하여 군집 기반에서 키워드 추출하는 LSI-based ClusterTextRank 기법과 추출된 키워드를 Latent Semantic Indexing(LSI)을 이용한 연관망 구축 기법을 제안한다. 제안 기법은 문서집합을 단어-문서 행렬로 표현하고, 이를 LSI를 이용하여 저차원의 개념 공간으로 차원을 축소한다. 그 다음 k-means 군집화 알고리즘을 이용하여 여러 군집으로 나누고, 각 군집에 포함된 단어들을 최대신장트리 그래프로 표현한 후 이에 근거한 군집 정보량을 고려하여 키워드를 추출한다. 그리고나서 추출된 키워드들 간에 유사도를 LSI 기법을 통해 구한 단어-개념 행렬을 이용하여 계산한 후, 이를 키워드 연관망으로 활용한다. 제안 기법의 성능을 평가하기 위해 여행 관련 블로그 데이터를 이용하였으며, 제안 기법이 기존 TextRank 알고리즘보다 키워드 추출의 정확도가 약 14% 가량 개선됨을 보인다.
문서 영상은 문서 구조 분석을 통하여 텍스트, 그림, 테이블 등의 세부 영역으로 분할 및 분류되는데, 테이블 영역에 있는 단어는 다른 영역의 단어보다 의미가 있기 때문에 주제어 검색과 같은 응용 분야에서 중요한 역할을 한다. 본 논문에서는 문서 영상의 테이블 영역에 존재하는 문자 성분을 단어단위로 추출하는 방법을 제안한다. 테이블 영역에서의 단어 추출은 실질적으로 테이블을 구성하는 셀 영역에서 단어를 추출하는 것이기 때문에 정확한 셀 추출 과정이 필요하다. 셀 추출은 연결 요소를 분석하여 테이블 프레임을 찾아내고, 교차점 검출은 전체가 아닌 테이블 프레임에 대해서만 수행한다. 잘못 검출된 교차점은 이웃하는 교차점과의 관계를 이용하여 수정하고, 최종 교차점 정보를 이용하여 셀을 추출한다. 추출된 셀 내부에 있는 텍스트 영역은 셀 추출 과정에서 분석한 문자성분의 연결 요소 정보를 재사용하여 결정하고, 결정된 텍스트 영역은 투영 프로파일을 분석하여 문자연로 분리된다. 마지막으로 분리된 문자열에 대하여 갭 군집화와 특수 기호 검출을 수행함으로써 단어 분리를 수행한다. 제안 방법의 성능 평가를 위하여 한글 논문 영상으로부터 추출한 총 In개의 테이블 영상에 대해 실험한 결과, $99.16\%$의 단어 추출 성공률을 얻을 수 있었다.
개체들 사이의 관계를 저차원 공간에 매핑하는 다차원척도법을 수행하기 위한 다양한 방법과 알고리즘이 개발되어왔다. 그러나 PROXSCAL이나 ALSCAL과 같은 기존의 기법들은 50개 이상의 개체를 포함하는 데이터 집합을 대상으로 개체 간의 관계와 군집 구조를 시각화하는데 있어서 효과적이지 못한 것으로 나타났다. 이 연구에서 제안하는 군집 지향 척도법 CLUSCAL(CLUster-oriented SCALing)은 기존 방법과 달리 입력되는 데이터의 군집 구조를 고려하도록 고안되었다. 50명의 저자동시인용 데이터와 85개 단어의 동시출현 데이터에 대해서 적용해본 결과 제안한 CLUSCAL 기법은 군집 구조를 잘 식별할 수 있는 MDS 지도를 생성하는 유용한 기법임이 확인되었다.
본 논문은 기존의 TextRank 알고리즘에 상호정보량 척도를 결합하여 군집 기반에서 키워드 추출하는 ClusterTextRank 기법을 제안한다. 제안 기법은 k-means 군집화 알고리즘을 이용하여 문서들을 여러 군집으로 나누고, 각 군집에 포함된 단어들을 최소신장트리 그래프로 표현한 후 이에 근거한 군집 정보량을 고려하여 키워드를 추출한다. 제안 기법의 성능을 평가하기 위해 여행 관련 블로그 데이터를 이용하였으며, 제안 기법이 기존 TextRank 알고리즘보다 키워드 추출의 정확도가 약 13% 가량 개선됨을 보인다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.