• 제목/요약/키워드: 단어벡터

검색결과 300건 처리시간 0.027초

YouTube 동영상 의견분석을 통한 사용과 충족 이론 측정 : 트로트 가수 조명섭 동영상을 중심으로 (Analyzing Comments of YouTube Video to Measure Use and Gratification Theory Using Videos of Trot Singer, Cho Myung-sub)

  • 홍한국;임병학;김삼문
    • 한국콘텐츠학회논문지
    • /
    • 제20권9호
    • /
    • pp.29-42
    • /
    • 2020
  • 본 연구의 목적은 소셜미디어 중 하나인 YouTube 동영상 사용자들이 남긴 의견을 추출하여 분석하는 질적연구방법을 제시한다. 이를 위해서 YouTube 동영상 사용자의견을 사용하여 사용과 충족 이론의 쾌락적 충족, 사회적 충족, 그리고 실용적 충족을 빈도분석과 토픽모델링을 통해 측정하였다. 측정결과, YouTube KBS 한국방송 채널 중 트로트 가수 조명섭 동영상을 사용자들이 시청하는 이유는 첫 번째로 높은 빈도를 보이는 것이 쾌락적 충족을 위해서였다. 다음 순으로 사회적 충족과 실용적 충족으로 나타났다. 단어-문서 네트워크 분석에서 연결정도중심성은 '응원', '감사', '화이팅', '최고' 등이 높게 나타났고, 매개중심은'감사', '응원', '화이팅'등의 단어가 높게 나타나 연결정도 중심성과 유사함을 보였다. 아이겐벡터중심성은 '사랑', '마음', '감사' 등의 단어가 높게 나타나 사용자들의 의견들에 가장 영향력이 높은 단어들임을 알 수 있다. 이는 YouTube의 트로트 가수 조명섭 동영상 시청자들 중 대다수가 동영상에 대해 사랑과 감사의 마음을 보이고 있음을 알 수 있다. 위의 세 가지 중심성 분석결과는 동영상을 시청하는 동기로 사용충족 이론의 쾌락적 충족과 사회적 충족 관련 단어들이 높은 값을 보이고 있다. 본 연구는 설문조사 기반의 구조방정식 모형을 따르지 않고, 질적분석연구를 자동화한 텍스트마이닝 기법을 사용하여 YouTube동영상을 사용하는 동기를 사용 및 충족 이론에 의해 밝혀냈다는 것에서 연구 함의를 찾을 수 있다.

다중요인모델에 기반한 텍스트 문서에서의 토픽 추출 및 의미 커널 구축 (Multiple Cause Model-based Topic Extraction and Semantic Kernel Construction from Text Documents)

  • 장정호;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.595-604
    • /
    • 2004
  • 문서 집합 내의 개념 또는 의미 관계의 자동 분석은 보다 효율적인 정보 획득과 단어 이상의 개념 수준에서의 문서간 비교를 가능케 한다. 본 논문에서는 다중요인모델에 기반 하여 텍스트 문서로부터 토픽들을 추출하고 이로부터 의미 커널(semantic kernel)을 구축하여 문서간 유사도를 측정하는 방안을 제시한다. 텍스트 문서는 내재된 토픽들의 다양한 결합에 의해 생성된다고 가정하며 하나의 토픽은 공통 주제에 관련되거나 적어도 자주 같이 나타나는 단어들의 집합으로 정의한다. 다중요인모델은 은닉층을 갖는 하나의 네트워크 형태로 표현되며, 토픽을 표현하는 단어 집합은 은닉노드로부터의 가중치가 높은 단어들로 구성된다. 일반적으로 이러한 다중요인 네트워크에서의 학습과 추론과정을 용이하게 하기 위해서는 근사적 확률 추정 기법이 요구되는데, 본 논문에서는 헬름홀츠 머신에 의한 방법을 활용한다. TDT-2 문서 집합에 대한 실험에서 토픽별로 관련 있는 단어 집합들을 추출할 수 있었으며, 4개의 텍스트 집합에 대한문서 검색 실험에서는 다중요인모델의 분석결과에 기반 한 의미 커널을 사용함으로써 기본 벡터공간 모델에 비해 평균정확도 면에서 통계적으로 유의한 수준의 성능 향상을 얻을 수 있었다.

단행본 서명의 단어 임베딩에 따른 자동분류의 성능 비교 (Performance Comparison of Automatic Classification Using Word Embeddings of Book Titles)

  • 이용구
    • 정보관리학회지
    • /
    • 제40권4호
    • /
    • pp.307-327
    • /
    • 2023
  • 이 연구는 짧은 텍스트인 서명에 단어 임베딩이 미치는 영향을 분석하기 위해 Word2vec, GloVe, fastText 모형을 이용하여 단행본 서명을 임베딩 벡터로 생성하고, 이를 분류자질로 활용하여 자동분류에 적용하였다. 분류기는 k-최근접 이웃(kNN) 알고리즘을 사용하였고 자동분류의 범주는 도서관에서 도서에 부여한 DDC 300대 강목을 기준으로 하였다. 서명에 대한 단어 임베딩을 적용한 자동분류 실험 결과, Word2vec와 fastText의 Skip-gram 모형이 TF-IDF 자질보다 kNN 분류기의 자동분류 성능에서 더 우수한 결과를 보였다. 세 모형의 다양한 하이퍼파라미터 최적화 실험에서는 fastText의 Skip-gram 모형이 전반적으로 우수한 성능을 나타냈다. 특히, 이 모형의 하이퍼파라미터로는 계층적 소프트맥스와 더 큰 임베딩 차원을 사용할수록 성능이 향상되었다. 성능 측면에서 fastText는 n-gram 방식을 사용하여 하부문자열 또는 하위단어에 대한 임베딩을 생성할 수 있어 재현율을 높이는 것으로 나타났다. 반면에 Word2vec의 Skip-gram 모형은 주로 낮은 차원(크기 300)과 작은 네거티브 샘플링 크기(3이나 5)에서 우수한 성능을 보였다.

핵심어 검출을 위한 단일 끝점 DTW알고리즘 (A Single-End-Point DTW Algorithm for Keyword Spotting)

  • 최용선;오상훈;이수영
    • 대한전자공학회논문지SP
    • /
    • 제41권3호
    • /
    • pp.209-219
    • /
    • 2004
  • 본 논문에서는 핵심어 검출 시스템을 실시간 적용이 가능한 하드웨어로 구현하기 위해 연산량이 적고 구조가 간단한 단일 끝점 DTW 방법을 제안한다. 제안된 알고리즘은 일반적 DTW가 양쪽 끝점을 요구하는데 비하여 단지 한쪽 끝점만 필요하므로 이용하기에 편리하며, 국부 검색의 연속이 전역 경로를 이루게 되므로 매우 적은 연산량을 가진다. 그리고, 제안한 단일 끝점 DTW가 보다 나은 성능을 지니도록 하기 위해 새로운 경사 가중치와 거리 측정법을 가지도록 하였다. 이외에도, 단일 끝점 DTW는 특징벡터 정규화를 적용하여 특징벡터 각각의 차원에서 데이터들이 같은 표준편차를 가지게 하며 모든 프레임이 같은 에너지를 가지도록 정규화 되었다 또한, 주어진 학습 패턴들에 클러스터링을 적용한 후, 각 클러스터 내에서 평균을 계산하여 구한 패턴을 해당 핵심어를 대표하는 여러 개의 기준패턴으로 삼았다. 이러한 기준패턴들과 입력 음성의 특징벡터가 이미 정해진 문턱값 보다 작은 거리 내에 있을 때 핵심어는 검출된다. 제안된 알고리즘을 고립단어 음성인식과 핵심어 검출 실험에 적용하여 다른 방법을 이용한 결과보다 성능이 뛰어남을 확인하였다.

스마트폰 애플리케이션을 위한 임베디드형 피드백 지원 검색체 (Embeded-type Search Function with Feedback for Smartphone Applications)

  • 강문중;황민태
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.974-983
    • /
    • 2017
  • 본 논문에서는 안드로이드 기반의 각종 어플리케이션에 내장시켜 사용가능한 검색체에 대해 연구하였다. 이를 위해 조사와 같이 무의미하지만 자주 사용되는 단어를 빈도수에 따라 억제하는 BM25, 아이템의 길이 편차에 따른 검색 순위 문제를 해결하기 위해 아이템의 길이에 따라 중요도를 보정하는 Pivoted Length Normalization, 그리고 벡터공간 모형 상에서 쿼리 벡터를 관련 있는 것으로 판정된 아이템들의 벡터 그룹으로 끌어당겨 보정하는 Rocchio's Method를 사용해 묵시적 피드백 기능을 지원하도록 하였다. 그리고 색인 작업은 오프라인 동작을 위한 간단 색인과 온라인 동작을 위한 정밀 색인의 두 단계로 나누어 동작성을 보장하도록 하였다. 본 논문에서 연구한 피드백 지원 검색체는 쿼리 유추를 통해 사용자의 입력을 색인된 자료와 비교해 입력 내용을 예측하고 오타 등의 사용자 실수에 대해서도 대응하므로 스마트폰 어플리케이션에 손쉽게 탑재되어 검색 기능을 향상시킬 수 있을 것으로 기대한다.

DCT와 계층 분할 벡터 양자화를 이용한 3차원 영상 부호화 (3D Image Coding Using DCT and Hierarchical Segmentation Vector Quantization)

  • 조성환;김응성
    • 인터넷정보학회논문지
    • /
    • 제6권2호
    • /
    • pp.59-68
    • /
    • 2005
  • 본 논문에서는 3차원 영상의 압축 전송을 위하여 3차원 영상에 대해 3차원 DCT를 수행하고 원 영상과의 비교에 따라 영상의 3차원 블록들을 계층적으로 분할하여 각 블록에 대해 유한상태 벡터 양자화를 수행하는 알고리듬을 제안한다. 3차원 DCT의 계수 특징을 이용하여 영상을 크기가 큰 배경 블록과 크기가 작은 윤곽선 블록으로 계층적으로 분할하고, 블록 계층분할 정보를 전송한다. 각 계층에 속한 블록들에 대해 따로 부호책을 설계하고 부호 비트 수를 줄이기 위해 유한상태 벡터양자화를 이용하여 부호단어의 인덱스를 계층 분할 정보와 함께 전송한다. Small Lobster와 Head 영상에 대하여 본 알고리듬으로 부호화했을 때 기존의 HFSVQ를 이용한 알고리듬보다는 각각 1.91 dB과 1.47 dB만큼 더 좋은 영상의 화질을 얻을 수 있었다.

  • PDF

음성 다이얼링을 위한 화자적응 (Speaker Adaptation for Voice Dialing)

  • 김원구
    • 한국음향학회지
    • /
    • 제21권5호
    • /
    • pp.455-461
    • /
    • 2002
  • 본 논문에서는 화자독립 음소 모델을 사용하는 개인용 음성 다이얼링 시스템의 성능 개선 방법을 제안하였다. 화자독립 음소모델을 사용한 음성 다이얼링 방법은 각 화자가 발성한 단어와 연관된 음소 열만을 저장하므로 저장 공간은 크게 줄일 수 있으나 화자독립 모델을 음소 인식에 사용할 때 발생하는 오차로 인하여 화자종속 모델을 사용하는 방법보다는 인식 성능이 저하되는 문제점이 있다. 본 논문에서는 이러한 문제를 해결하기 위하여 학습과정에서 학습 데이터의 음소 열과 화자 적응을 위한 변환 벡터를 동시에 추정한 후 음소 열과 함께 저장하고, 인식 시에 화자독립 음소 모델을 각 화자의 변환벡터를 사용하여 변환한 후 인식을 수행하는 방법을 제안하였다. 여기서 화자적응을 위한 변환 벡터는 확률적 매칭 (stochastic matching)을 위한 최고 유사도 (maximum likelihood) 방법을 이용하여 구하였으며 음소 열과 함께 반복적으로 추정되었다. 인식 실험에서 제안된 방법은 음소 열만을 사용하는 기존 인식 시스템보다 우수한 성능을 나타내었다.

소셜 네트워크에서 감정단어의 단계별 코사인 유사도 기법을 이용한 추천시스템 (Personalized Recommendation System using Level of Cosine Similarity of Emotion Word from Social Network)

  • 권응주;김종우;허노정;강상길
    • 정보화연구
    • /
    • 제9권3호
    • /
    • pp.333-344
    • /
    • 2012
  • 본 논문에서는 개인의 취향과 관심이 반영 되어있는 소셜 정보를 활용하여 사용자에게 영화를 추천할 수 있는 시스템을 제안하였다. 시스템에서 데이터 구축은 포털사이트에서 영화 정보를 수집하고 페이스북과 트위터 같은 SNS를 통해 소셜 정보를 수집한다. 본 논문에서는 사용자의 감정에 따른 보다 정교한 처리를 위하여 6단계의 감정단계로 분류한 소셜 정보의 벡터공간 모형의 구축방법을 제안한다. 추천을 위한 유사도 측도 방법은 2단계로 구성되어 있다. 첫 번째는 일반적인 코사인 측도를 통한 영화 목록의 구축 단계이고, 두 번째는 기존의 코사인 측도(Cosine measure)를 활용한 좌표평면에서 감정 단계별 벡터 정보 표현 방법 및 유사도 측도 방법을 통해 추천 영화 목록의 결정 단계이다. 본 논문의 추천 시스템의 성능을 평가하기 위하여 기존의 추천 시스템과 비교 실험을 통하여 본 연구의 추천 시스템의 유용성을 검증하였다.

강인한 음성인식을 위한 통계적 특징벡터 추출방법의 개선 (An Improvement of Stochastic Feature Extraction for Robust Speech Recognition)

  • 김회린;고진석
    • 한국음향학회지
    • /
    • 제23권2호
    • /
    • pp.180-186
    • /
    • 2004
  • 음성 신호에 존재하는 잡음은 음성 인식기의 성능을 현저하게 감소시킨다. 이것은 잡음이 훈련 조건과 인식 조건 사이의 불일치를 가져오기 때문이다. 본 논문에서는 이러한 불일치를 최소화하기 위해서 통계적 특징벡터의 추출방법을 개선하기 위한 방법을 연구하였다. 밴드 SNR에 따라 잡음 스펙트럼의 차감 레벨을 조절하는 기존의 멀티 밴드 잡음 차감법 (MSS)을 개선하기 위하여 잡음 정규화 상수를 이용하여 잡음 스펙트럼의 차감 레벨을 보다 정확하게 조절하는 방법 (M-MSS)을 제시하였다. 다음으로, 기존의 통계적 특징벡터 추출방법 (SFE)에서 잡음 차감법을 파워 스펙트럼 영역에 적용함으로써 성능을 개선하였다(M-SFE). 마지막으로, 위의 두 가지 방법의 장점을 결합하기 위해서 밴드 SNR에 근거한 통계적 특징벡터 추출방법 (MMSS-MSFE)을 제안하였다. 제안된 방법들은 다양한 잡음 환경 하에서 화자독립 고립 단어 인식으로 성능을 평가하였다. 기본적인 잡음 차감법 (SS)에 비하여 M-MSS, M-SFE와 MMSS-MSFE의 평균 에러율은 각각 18.6%, 15.1%와 33.9% 감소하였다. 위의 결과로부터 제안한 방법이 잡음에 강인한 음성인식을 위해 매우 효과적임을 입증하였다.

자막 병렬 코퍼스를 이용한 이중 언어 워드 임베딩 (Bilingual Word Embedding using Subtitle Parallel Corpus)

  • 이설화;이찬희;임희석
    • 한국컴퓨터교육학회 학술대회
    • /
    • 한국컴퓨터교육학회 2017년도 하계학술대회
    • /
    • pp.157-160
    • /
    • 2017
  • 최근 자연 언어 처리 분야에서는 단어를 실수벡터로 임베딩하는 워드 임베딩(Word embedding) 기술이 많은 각광을 받고 있다. 최근에는 서로 다른 두 언어를 이용한 이중 언어 위드 임베딩(Bilingual word embedding) 방법을 사용하는 연구가 많이 이루어지고 있는데, 이중 언어 워드 임베딩에서 임베딩 절과의 질은 학습하는 코퍼스의 정렬방식에 따라 많은 영향을 받는다. 본 논문은 자막 병렬 코퍼스를 이용하여 밑바탕 어휘집(Seed lexicon)을 구축하여 번역 연결 강도를 향상시키고, 이중 언어 워드 임베딩의 사천(Vocabulary) 확장을 위한 언어별 연결 함수(Language-specific mapping function)을 학습하는 새로운 방식의 모델을 제안한다. 제안한 모델은 기존 모델과의 성능비교에서 비교할만한 수준의 결과를 얻었다.

  • PDF