Proceedings of the Korea Information Processing Society Conference
/
2016.04a
/
pp.394-395
/
2016
워드 임베딩(word embedding)은 정보검색이나 기계학습에서 단어를 표현하기 위하여 사용되던 기존의 one-hot 벡터 방식의 희소공간 및 단어들 간의 관계정보를 유지할 수 없는 문제를 해결하기 위한 방법이다. 워드 임베딩의 한 방법으로 word2vec은 최근 빠른 학습시간과 높은 효과를 얻을 수 있는 모델로 주목을 받고 있다. word2vec은 수행 시 주어지는 옵션인 벡터차원과 문맥크기에 의해 그 결과 품질이 상이하다. Mikolov는 구글 뉴스 문헌 집합에 대하여 word2vec을 실험하고, 적합한 옵션을 제시하였다. 본 논문에서는 구글 뉴스 문헌 같은 일반 문서가 아닌 생의학 분야에 특화된 문헌에 대하여 word2vec에 대한 다양한 옵션을 실험하고, 생의학 문헌에 적합한 최적의 조건을 분석한다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.326-329
/
2019
기계독해를 실용화하기 위해 단락을 검색하는 검색 모델은 최근 기계독해 모델이 우수한 성능을 보임에 따라 그 필요성이 더 부각되고 있다. 그러나 기존 검색 모델은 질의와 단락의 어휘 일치도나 유사도만을 계산하므로, 기계독해에 필요한 질의 어휘의 문맥에 해당하는 단락 검색을 하지 못하는 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위해 Word2vec의 입력 단어열의 벡터에 해당하는 IN Weight Matrix와 출력 단어열의 벡터에 해당하는 OUT Weight Matrix를 사용한 단락 검색 모델을 제안한다. 제안 방법은 기존 검색 모델에 비해 정확도를 측정하는 Precision@k에서 좋은 성능을 보였다.
Proceedings of the Korea Information Processing Society Conference
/
2017.04a
/
pp.873-876
/
2017
최근 정보검색의 효율성을 위해 데이터를 분석하여 해당 데이터를 가장 잘 나타내는 연관단어를 추출 및 추천하는 연구가 활발히 이루어지고 있다. 현재 관련 연구들은 출현 빈도수를 사용하는 방법이나 LDA와 같은 기계학습 기법을 활용해 데이터를 분석하여 연관단어를 생성하는 방법을 제안하고 있다. 기계학습 기법은 결과 값을 찾는데 사용되는 특징들을 전문가가 직접 설계해야 하며 좋은 결과를 내는 적절한 특징을 찾을 때까지 많은 시간이 필요하다. 또한, 파라미터들을 직접 설정해야 하므로 많은 시간과 노력을 필요로 한다는 단점을 지닌다. 이러한 기계학습 기법의 단점을 극복하기 위해 인공신경망을 다층구조로 배치하여 데이터를 분석하는 딥러닝이 최근 각광받고 있다. 본 논문에서는 기존 기계학습 기법을 사용하는 연관단어 추출연구의 한계점을 극복하기 위해 딥러닝을 활용한다. 먼저, 인공신경망 기반 단어 벡터 생성기인 Word2Vec를 사용하여 다양한 텍스트 데이터들을 학습하고 룩업 테이블을 생성한다. 그 후, 생성된 룩업 테이블을 바탕으로 인공신경망의 한 종류인 합성곱 신경망을 활용하여 사용자가 입력한 주제어와 관련된 최근 뉴스데이터를 분석한 후, 주제별 최신 연관단어를 추출하는 시스템을 제안한다. 또한 제안한 시스템을 통해 생성된 연관단어의 정확률을 측정하여 성능을 평가하였다.
Journal of Korean Library and Information Science Society
/
v.34
no.3
/
pp.211-229
/
2003
In this paper, we have focused that the number of word in the web document affects definite clustering performance. Our experimental results have clearly shown the relationship between the amounts of word and its impact on clustering performance. We also have presented an algorithm that can be supplemented of the contrast portion through co-links frequency of web documents. Testing bench of this research is 1,449 web documents included on 'Natural science' category among the Naver Directory. We have clustered these objects by term-based clustering, link-based clustering, and hybrid clustering method, and compared the output results with originally allocated category of Naver directory.
The previous studies to extract features for document through word association have the problems of updating profiles periodically, dealing with noun phrases, and calculating the probability for indices. We propose more effective feature extraction method which is using association word mining. The association word mining method, by using Apriori algorithm, represents a feature for document as not single words but association-word-vectors. Association words extracted from document by Apriori algorithm depend on confidence, support, and the number of composed words. This paper proposes an effective method to determine confidence, support, and the number of words composing association words. Since the feature extraction method using association word mining does not use the profile, it need not update the profile, and automatically generates noun phrase by using confidence and support at Apriori algorithm without calculating the probability for index. We apply the proposed method to document classification using Naive Bayes classifier, and compare it with methods of information gain and TFㆍIDF. Besides, we compare the method proposed in this paper with document classification methods using index association and word association based on the model of probability, respectively.
Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).
Annual Conference on Human and Language Technology
/
2013.10a
/
pp.27-32
/
2013
본 논문은 잘 알려지지 않은 언어 쌍에 대해서 병렬말뭉치(parallel corpus)로부터 자동으로 이중언어 사전을 추출하는 방법을 제안하였다. 이 방법은 중간언어(pivot language)를 매개로 하고 문맥 벡터를 생성하기 위해 공개된 단어 정렬 도구인 Anymalign을 사용하였다. 그 결과로 초기사전(seed dictionary)을 사용한 문맥벡터의 번역 과정이 필요 없으며 통계적 방법의 약점인 낮은 빈도수를 가지는 어휘에 대한 번역 정확도를 높였다. 또한 문맥벡터의 요소 값으로 특정 임계값 이상을 가지는 양방향 번역 확률 정보를 사용하여 상위 5위 이내의 번역 정확도를 크게 높였다. 본 논문은 두 개의 서로 다른 언어 쌍 한국어-스페인어 그리고 한국어-프랑스어 양방향에 대해서 각각 이중언어 사전을 추출하는 실험을 하였다. 높은 빈도수를 가지는 어휘에 대한 번역 정확도는 이전 연구에서 보인 실험 결과에 비해 최소 3.41% 최대 67.91%의 성능 향상을 보였고 낮은 빈도수를 가지는 어휘에 대한 번역 정확도는 최소 5.06%, 최대 990%의 성능 향상을 보였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2016.06a
/
pp.35-36
/
2016
본 논문에서는 기존 Bag-of-Visual words (BoW) 접근법에서 반영하지 못한 이미지의 공간 정보를 활용하기 위해서 Spatial Pyramid Matching (SPM) 기법을 Latent Dirichlet Allocation (LDA) 모델에 결합하여 이미지를 분류하는 모델을 제안한다. BoW 접근법은 이미지 패치를 시각적 단어로 변환하여 시각적 단어의 분포로 이미지를 표현하는 기법이며, 기존의 방식이 이미지 패치의 위치정보를 활용하지 못하는 점을 극복하기 위하여 SPM 기법을 도입하는 연구가 진행되어 왔다. 또한 이미지 패치를 정확하게 표현하기 위해서 벡터 양자화 대신 희소 부호화 기법을 이용하여 이미지 패치를 시각적 단어로 변환하였다. 제안하는 모델은 BoW 접근법을 기반으로 위치정보를 활용하는 SPM 을 LDA 모델에 적용하여 시각적 단어의 토픽을 추론함과 동시에 multi-class SVM 분류기를 이용하여 이미지를 분류한다. UIUC 스포츠 데이터를 이용하여 제안하는 모델의 분류 성능을 검증하였다.
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.103-105
/
2002
이 논문에서는, PC 클러스터 환경에서 질의 확장을 사용하는 정보 검색 시스템 (IR)을 설계하고 구현한 내용을 기술한다. 이 정도 검색 시스템은 문서 집합을 저장하고, 문서 집합은 역색인 파인 (IIF)로 색인되고, 랭킹 방법으로 벡터 모델을 사실하며, 질의 확장 방법으로 코사인 유사도를 사용한다. 질의 확장이란 사용자가 준 원래의 질의에 연관된 단어를 추가하여 검색 효율을 향상시키는 것이다. 여기서 제안하는 병렬 정보 검색 시스템에서는 역색인 과일은 여러 개로 분활되는데 lexical 분할 방법과 greedy 분할 방법을 사용한다. 사용자의 질의가 들어오면 질의확장을 하여 여러 개의 단어로 이루어진 확장된 질의가 만들어 지는데 이 확장된 질의를 구성하는 단어들은 각 단어와 연관된 IIF를 가지고 있는 노드에 보내어져서 병렬로 처리된다. 실험을 통하여 병렬 IR 시스템의 성능이 질의 확장과 IIF의 두 가지 분한 방법에 의해 어떻게 영향을 받는지 보인다. 실험에는 표준 한국어 테스트 말뭉치인 EKSET과 KTSET을 사용하였다. 실험에 따르면 greedy 분활 방법이 lexical 분할 방법에 비해 20%정도의 성능 향상을 보였다.
Park, Youngmin;Jeong, Soyun;Lee, Jeong-Eom;Shin, Dongsoo;Kim, Seona;Seo, Junyun
한국어정보학회:학술대회논문집
/
2017.10a
/
pp.194-196
/
2017
기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.