• Title/Summary/Keyword: 단순회귀모형

Search Result 141, Processing Time 0.022 seconds

Analysis of Urban Heat Island Effect Using Information from 3-Dimensional City Model (3DCM) (3차원 도시공간정보를 이용한 도시열섬현상의 분석)

  • Chun, Bun-Seok;Kim, Hag-Yeol
    • Spatial Information Research
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2010
  • Unlike the previous studies which have focused on 2-dimensional urban characteristics, this paper presents statistical models explaining urban heat island(UHI) effect by 3-dimensional urban morphologic information and addresses its policy implications. 3~dimensional informations of Columbus, Ohio arc captured from LiDAR data and building boundary informations are extracted from a building digital map, Finally NDV[ and temperature data are calculated by manipulating band 3, band 4, and thermal hand of LandSat images. Through complicated data processing, 6 independent variables(building surface area, building volume, height to width ratio, porosity, plan surface area) are introduced in simple and multiple linear regression models. The regression models are specified by Box-Tidwell method, finding the power to which the independent variable needs to raised to be in a linearity. Porosity, NDVI, and building surface area are carefully chosen as explanatory variables in the final multiple regression model, which explaining about 57% of the variability in temperatures. On reducing UHI, various implications of the results give guidelines to policy-making in open space, roof garden, and vertical garden management.

Characteristics of Iλ-optimality Criterion compared to the D- and Heteroscedastic G-optimality with respect to Simple Linear and Quadratic Regression (단순선형회귀와 이차형식회귀모형을 중심으로 D-와 이분산 G-최적에 비교한 Iλ-최적실험기준의 특성연구)

  • Kim, Yeong-Il
    • Journal of Korean Society for Quality Management
    • /
    • v.21 no.2
    • /
    • pp.140-155
    • /
    • 1993
  • The characteristics of $I_{\lambda}$-optimality, one of the linear criteria suggested by Fedorov (1972) are investigated with respect to the D-and heteroscedastic G-optimality in case of non-constant variance function. Though having limited results obtained from simple models, we may conclude that $I_{\lambda}$-optimality is sometimes preferred to the heteroscedastic G-optimality suggested newly bv Wong and Cook (1992) in the sense that the experimenter's belief in weighting function exists in $I_{\lambda}$-optimality criterion, not to mention its computational simplicity.

  • PDF

Analysis for the Effect of Population and Urban Land use on the Water Quality in Paldang Lake Using Simple Regression Model (단순회귀모형을 이용한 인구와 도시적 토지이용이 팔당호 수질에 미치는 영향 분석)

  • Kim, Sangdan;Song, Mee Yong;Lee, Ki Young;Lee, Seong-Ryong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.703-707
    • /
    • 2004
  • In this study, a simple regression model is proposed in order to analyse the effect of population and urban land use on the water quality of Paldang lake, Gyeonggi. As a comparison result with Qua12E water quality model, the proposed model shows very good predicting performance in simulating several alternative scenarios. In order to accomplish BOD 1ppm of Paldang lake, various model applications show that the population incoming and urban land use management should be afoot in addition to stricter outflow water quality from sewer treatmement systems.

Construction of Urban Crime Prediction Model based on Census Using GWR (GWR을 이용한 센서스 기반 도시범죄 특성 분석 및 예측모델 구축)

  • YOO, Young-Woo;BAEK, Tae-Kyung
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.4
    • /
    • pp.65-76
    • /
    • 2017
  • The purpose of this study was to present a prediction model that reflects crime risk area analysis, including factors and spatial characteristics, as a precursor to preparing an alternative plan for crime prevention and design. This analysis of criminal cases in high-risk areas revealed clusters in which approximately 25% of the cases within the study area occurred, distributed evenly throughout the region. This means that using a multiple linear regression model might overestimate the crime rate in some regions and underestimate in others. It also suggests that the number of deserted houses in an analyzed region has a negative relationship with the dependent variable, based on the multiple linear regression model results, and can also have different influences depending on the region. These results reveal that closure signs in a study area affect the dependent variable differently, depending on the region, rather than a simple or direct relationship with the dependent variable, as indicated by the results of the multiple linear regression model.

Time series property of the 30th Design Hourly Factors in National Highways (일반국도 30번째 설계시간계수의 시계열적인 특성 분석에 관한 연구)

  • Oh, Ju-Sam;Im, Sung-Man
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.1-9
    • /
    • 2007
  • To decide the number of road lane is very important and related to the 30th design hourly factor in the design of transportation facilities. But, as the quantitative division of road types is difficult, most planner and designer for deciding the 30th design hourly factors have used the fixed values in our country. In this study, we have analyzed the time series property of the design hourly factors in national highways and developed the model capable of estimating the 30th design hourly factors using real data. The presented model is a simple regression model(DHV = K*AADT), which is applied to the division of road lanes(2 or 4 lanes) and the level of AADT(3 levels). As a results, the simple regression model have better performance than the existing method with respect to MAPE and $R^2$. Also, the variations of the 30th design hourly factors are small. The more traffic volume increase, the more the factors decrease. But, the limitation of this study is to use the exiting method estimating the values of the factors, it is subject to study hereafter.

  • PDF

Adaptive Short-Term Vehicle Speed Prediction Models (적응성 있는 단기간 속도 예측모형 개발에 관한 연구)

  • 조범철
    • Proceedings of the KOR-KST Conference
    • /
    • 1998.10a
    • /
    • pp.265-274
    • /
    • 1998
  • 본 논문은 도로를 주행하는 차량의 지점속도에 대하여 단기간(short-term)으로 예측하는 네 가지의 모형들에 대한 개발 및 결과의 비교하고 평가했다. 사용된 기법들로는 다중회귀분석, 시계열분석(ARIMA), 인공 신경망, 칼만필터링 등이며, 모형의 구출을 위하여 다수의 독립변수 및 입력변수가 요구되는 다중회귀분석과 인공 신경망에서는 연속방정식에서 고려되는 변수들간의 단순상관계수 및 편상관계수의 계산을 통해서 입력변수가 설정이 되었으며, 시계열분석(ARIMA)과 칼만필터링 등 단일 입력 변수만을 요하는 모형에서는 바로 전 시간대와 현재시간대의간격동안 속도의 변화량을 입력변수로 설정하였다. 속도를 비롯해서 교통 데이터는 현장자료를 사용하였는데, 이는 서울의 한강 옆에 위치한 올림픽대로 중 한강대로에 위치한 검지기 3개를 통해서 천호동 방면으로 이동하는 교통류에 대해서 17시간 (00시~17시)동안 수집했다. 17시간 수집했는데 그중에 검지된 속도는 14km/h에서 98km/h까지 변하는 등, 수집된 자료에는 다양한 교통상태가 포함되어 있는데 이는 각 모형들의 정확한 예측력과 적응성을 평가하기 위함이었다. 각 모형은 예측하고자 하는 시점으로부터 1, 5, 10, 15분 후의 속도를 예측하는 것으로 총 4가지의 예측시간간격으로 각각 실험되었다. 결과는 전반적으로 신뢰성 있게 나왔으나 그중에서도 정확성면에서는 인공신경망과 칼만필터링이 우수했고 적응성면에서는 칼만필터리딩 탁월했다. 또한 1분 후의 속도를 예측하는 결과들은 모형들간에 거의 비슷한 정확도를 보여주었는데 이는 입력변수의 설정이 중요한 것임을 보여주는 것이라 판단된다. 있는 기법이다.적으로 세부적 차종분류로 접근한다.의 영향들을 고려함으로써 가로망 설계 과정에서 가로망의 상반된 역할인 이동성과 접근성의 비교가 가능한 보다 현실적인 가로망 설계 모형을 구축하고자 한다. 지금까지 소개된 가로망 설계모형들은 용량변화에 대한 설계변수의 형태에 따라 이산적 가로망 설계 모형과 연속적 가로망 설계모형으로 나뉘어지게 된다. 본 논문의 경우, 계산속도의 향상 측면에서는 연속적 가로망 설계 모형을 도입할 수 있지만, 이때 요구되는 도로용량이 이산적인 변수(차선 수)로 결정되어야만 신호제어 변수를 결정할 수 있기 때문에, 이산적 가로망 설계 모형이 사용된다. 하지만, 이산적 설계모형의 경우 조합최적화 문제이므로 정확한 최적해를 구하기 위해서는 상당한 시간이 소요되며, 경우에 따라서는 국부 최적해에 빠지게 된다. 이러한 문제를 극복하기 위해, 우선 이상적 모형의 근사화, 혹은 조합최적화문제를 위해 개발된 Simulated Annealing기법의 적용, 연속적 모형의 변수를 이산화하는 방법 등 다양한 모형들을 고려해 본 뒤, 적절한 모형을 적용할 것이다. 가로망 설계 모형에서 신호제어를 고려하기 위해서는 주어진 가로망에 대한 통행 배정과정에서 고려되는 통행시간을 링크통행시간과 교차로 지체시간을 동시에 고려해야 하는데, 이러한 문제의 해결을 위해서 최근 활발히 논의되고 있는 교차로에서의 신호제어에 대응하는 통행배정 모형을 도입하여 고려하고자 한다. 이를 위해서 지금까지 연구되어온 Global Solution Approach와 Iterative Approach를 비교, 검토한 뒤 모형에 보다 알맞은 방법을 선택한다. 차량의

  • PDF

Variable Selection in Frailty Models using FrailtyHL R Package: Breast Cancer Survival Data (frailtyHL 통계패키지를 이용한 프레일티 모형의 변수선택: 유방암 생존자료)

  • Kim, Bohyeon;Ha, Il Do;Noh, Maengseok;Na, Myung Hwan;Song, Ho-Chun;Kim, Jahae
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.5
    • /
    • pp.965-976
    • /
    • 2015
  • Determining relevant variables for a regression model is important in regression analysis. Recently, a variable selection methods using a penalized likelihood with various penalty functions (e.g. LASSO and SCAD) have been widely studied in simple statistical models such as linear models and generalized linear models. The advantage of these methods is that they select important variables and estimate regression coefficients, simultaneously; therefore, they delete insignificant variables by estimating their coefficients as zero. We study how to select proper variables based on penalized hierarchical likelihood (HL) in semi-parametric frailty models that allow three penalty functions, LASSO, SCAD and HL. For the variable selection we develop a new function in the "frailtyHL" R package. Our methods are illustrated with breast cancer survival data from the Medical Center at Chonnam National University in Korea. We compare the results from three variable-selection methods and discuss advantages and disadvantages.

Mapping facial expression onto internal states (얼굴표정에 의한 내적상태 추정)

  • 한재현;정찬섭
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.04a
    • /
    • pp.118-123
    • /
    • 1998
  • 얼굴표정과 내적상태의 관계 모형을 수립하기 위한 기초 자료로서 얼굴표정과 내적상태의 대응관계를 조사하였다. 심리적으로 최소유의미거리에 있는 두 내적상태는 서로 구별되는 얼굴표정과 내적상태의 일대일 대응 관계가 성립한다는 것을 발결하였다. 얼굴표정 차원값과 내적상태 차원값의 관계 구조를 파악하기 위하여 중다회귀분석을 실시한 결과, 쾌-불쾌상태는 입의 너비에 의해서, 각성-수면상태는 눈과 입이 열린 정도에 의해서 얼굴표정에 민감하게 반영되는 것으로 나타났다. 얼굴표정 차원 열 두개가 내적상태 차원 상의 변화를 설명하는 정도는 40%내외였다. 선형모형이 이처럼 높은 예측력을 갖는다는 것은 이 두 변수 사이에 비교적 단순한 수리적 대응 구조가 존재한다는 것을 암시한다.

  • PDF

Design and Application of a Winning Forecast Model of the AOS Genre Game (AOS 장르 게임의 승패 예측 모형의 설계와 활용)

  • Ku, Ji-Min;Yu, Kyeonah
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Games of the AOS genre are classified as an e-sport rather than a recreational computer game. The involved statistical analyses such as game playing patterns and the season's characters gain importance due to the expertise-requiring nature of sports. In this study, the strategic analysis of computer games was conducted by using data mining techniques on League of Legend, a representative AOS game. We designed and tested a winning forecast model using winning percentage prediction techniques such as logistic regression analysis, discriminant analysis, and artificial neural networks. The game data analysis results were represented by a probabilistic graph and used in the visualization tool for game play. Experimental results of the winning forecast model showed a high classification rate of 95% on average with potential for use in establishing various strategies for game play with the visualization tool.

Short-term Construction Investment Forecasting Model in Korea (건설투자(建設投資)의 단기예측모형(短期豫測模型) 비교(比較))

  • Kim, Kwan-young;Lee, Chang-soo
    • KDI Journal of Economic Policy
    • /
    • v.14 no.1
    • /
    • pp.121-145
    • /
    • 1992
  • This paper examines characteristics of time series data related to the construction investment(stationarity and time series components such as secular trend, cyclical fluctuation, seasonal variation, and random change) and surveys predictibility, fitness, and explicability of independent variables of various models to build a short-term construction investment forecasting model suitable for current economic circumstances. Unit root test, autocorrelation coefficient and spectral density function analysis show that related time series data do not have unit roots, fluctuate cyclically, and are largely explicated by lagged variables. Moreover it is very important for the short-term construction investment forecasting to grasp time lag relation between construction investment series and leading indicators such as building construction permits and value of construction orders received. In chapter 3, we explicate 7 forecasting models; Univariate time series model (ARIMA and multiplicative linear trend model), multivariate time series model using leading indicators (1st order autoregressive model, vector autoregressive model and error correction model) and multivariate time series model using National Accounts data (simple reduced form model disconnected from simultaneous macroeconomic model and VAR model). These models are examined by 4 statistical tools that are average absolute error, root mean square error, adjusted coefficient of determination, and Durbin-Watson statistic. This analysis proves two facts. First, multivariate models are more suitable than univariate models in the point that forecasting error of multivariate models tend to decrease in contrast to the case of latter. Second, VAR model is superior than any other multivariate models; average absolute prediction error and root mean square error of VAR model are quitely low and adjusted coefficient of determination is higher. This conclusion is reasonable when we consider current construction investment has sustained overheating growth more than secular trend.

  • PDF