• Title/Summary/Keyword: 단순크리깅

Search Result 13, Processing Time 0.021 seconds

Assessment of Regional Seismic Vulnerability in South Korea based on Spatial Analysis of Seismic Hazard Information (공간 분석 기반 지진 위험도 정보를 활용한 우리나라 지진 취약 지역 평가)

  • Lee, Seonyoung;Oh, Seokhoon
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.573-586
    • /
    • 2019
  • A seismic hazard map based on spatial analysis of various sources of geologic seismic information was developed and assessed for regional seismic vulnerability in South Korea. The indicators for assessment were selected in consideration of the geological characteristics affecting the seismic damage. Probabilistic seismic hazard and fault information were used to be associated with the seismic activity hazard and bedrock depth related with the seismic damage hazard was also included. Each indicator was constructed of spatial information using GIS and geostatistical techniques such as ordinary kriging, line density mapping and simple kriging with local varying means. Three spatial information constructed were integrated by assigning weights according to the research purpose, data resolution and accuracy. In the case of probabilistic seismic hazard and fault line density, since the data uncertainty was relatively high, only the trend was intended to be reflected firstly. Finally, the seismic activity hazard was calculated and then integrated with the bedrock depth distribution as seismic damage hazard indicator. As a result, a seismic hazard map was proposed based on the analysis of three spatial data and the southeast and northwest regions of South Korea were assessed as having high seismic hazard. The results of this study are expected to be used as basic data for constructing seismic risk management systems to minimize earthquake disasters.

Optimization of the Flapping Motion for the High Maneuverability Flight (기동성 비행을 위한 날갯짓 경로의 최적화)

  • Choi, Jung-Sun;Kim, Jae-Woong;Lee, Do-Hyung;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.6
    • /
    • pp.653-663
    • /
    • 2012
  • The study considers the high maneuverability flight and path optimization is conducted to investigate the appropriate generation of the lift and thrust considering the angle of the stroke plane. The path optimization problem is defined according to the various purposes of the high maneuverability flight. The flying purposes are to maximize thrust force, lift force and both lift and thrust forces. The flapping motion of the airfoil is made by a combined sinusoidal plunging and pitching motion in each problem. The optimization process is carried out by using well-defined surrogate models. The surrogate model is determined by the results of two-dimensional computational fluid dynamics analysis. The Kriging method is used to make the surrogate model and a genetic algorithm is utilized to optimize the surrogate model. The optimization results show the flapping motions for the high maneuverable flight. The effects on the generation of lift and thrust forces are confirmed by analyzing the vortex.

A Runoff Parameter Estimation Using Spatially Distributed Rainfall and an Analysis of the Effect of Rainfall Errors on Runoff Computation (공간 분포된 강우를 사용한 유출 매개변수 추정 및 강우오차가 유출계산에 미치는 영향분석)

  • Yun, Yong-Nam;Kim, Jung-Hun;Yu, Cheol-Sang;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • This study was intended to investigate the rainfall-runoff relationship with spatially distributed rainfall data, and then, to analyze and quantify the uncertainty induced by spatially averaging rainfall data. For constructing spatially distributed rainfall data, several historical rainfall events were extended spatially by simple kriging method based on the semivariogram as a function of the relative distance. Runoff was computed by two models; one was the modified Clark model with spatially distributed rainfall data and the other was the conventional Clark model with spatially averaged rainfall data. Rainfall errors and discharge errors occurred through this process were defined and analyzed with respect to various rain-gage network densities. The following conclusions were derived as the results of this work; 1) The conventional Clark parameters could be appropriate for translating spatially distributed rainfall data. 2) The parameters estimated by the modified Clark model are more stable than those of the conventional Clark model. 3) Rainfall and discharge errors are shown to be reduced exponentially as the density of rain-gage network is increased. 4) It was found that discharge errors were affected largely by rainfall errors as the rain-gage network density was small.