• Title/Summary/Keyword: 단순겹치기접착이음

Search Result 6, Processing Time 0.022 seconds

The Evaluation of Tensile-shear Strength on the Al-Alloy Single-lap Adhesive Joints (AI합금 단순겹치기 접착이음의 인장-전단강도 평가)

  • Oh, S. K.;Yu, Y. C.;Jeong, E. S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.567-571
    • /
    • 1997
  • Recently, automobile industry has led to increasing use of aluminum alloy for weight reduction. Automobile made of aluminum alloy can be given lighter, stronger and a harder surface by anodizing than one made of steel-alloy. In this paper, we investigate the influence of lap length, adherend thickness and adhesive thickness on adhesive strength of single-lap adhesive joints by conducting tensile-shear tests. Single-lap adhesive joints of aluminum was calculated using joint factor by using adhesive length, adherend thickness of specimen.

  • PDF

Analysis on the Interface Edge Crack in Aluminum Bonded Single Lap-joint (알루미늄 단순겹치기 접착이음의 에지계면균열에 대한 연구)

  • Yu, Y.C.;Park, J.H.;Jeong, E.S.;Yi, W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.655-659
    • /
    • 1997
  • The analysis of cracks at the interface between dissimilar materilar has received a great deal of attention in recent years. In this paper we conducted the static tensile test for the aluminum bonded single lap-joint with the interface edge crack. Comparing this results, that is ultimate load and strain value of aluminum adherend by strain gauge with the fracture mechanics parameters, compliance and stress intensity factors acquied from the boundary element analysis, we concluded that there are critical value of crack length to provoke the interface fracture.

  • PDF

Nondestructive Strength Evaluation of Adhesive-Bonded Single-Lap Joints by Signal Processing Method (신호처리기법을 이용한 단순겹치기 접착이음의 비파괴적 강도평가)

  • Jeong, Il-Hwa;O, Seung-Kyu;Hwang, Yeong-Taik;Jang, Chul-Seob;Jeong, Eui-Seob;Yi, Won
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.541-546
    • /
    • 2001
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as the aeronautical and space industries, automobile manufacture, and electronics. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This study used adhesive-bonded single-lap joints specimen to evaluate such possibility by ultrasonic signal processing method.

  • PDF

Analysis on the Bonded Single Lap-Joint Containing the Interface Edge Crack (에지계면균열을 갖는 단순겹치기 접착이음의 강도평가)

  • Yoo, Young-Chul;Park, Jung-Hwan;Lee, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.159-166
    • /
    • 1998
  • The problem of interface crack in the bonded structures has received a great deal of attention in recent years. In this paper the aluminum bonded single lap-joint containing the interface edge crack is investigated. The tensile load and the average shear stress of the adhesive joints which have different crack length are obtained from the static tensile tests. The critical value of crack length to provoke the interface fracture is determined to a/L=0.4, where a is the interface crack length and L is the adhesive lap-length. The fracture mechanical parameters are introduced to confirm the existence of the critical crack length. The compliance and the stress intensity factors are calculated using the displacement and the stress near the interface crack tip by the boundary element method. These numerical results support the experimental results that the critical value of a/L is 0.4. It is known that the compliance and the stress intensity factors are the efficient parameters to estimate the bonded single lap-joint containing the interface edge crack.

  • PDF

Evaluation Method of Bonded Strength Considering Stress Singularity in Adhesively Bonded Joints (응력특이성을 고려한 접착이음의 강도평가 방법)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.58-68
    • /
    • 1998
  • Advantages of adhesively bonded joints and techniques of weight reduction have led to increasing use of structural adhesives such as LSI(large scale integration) package, automobile, aircraft in the various industries. In spite of such wide applications of adhesively bonded joints, the evaluation method of bonding strength has not been established. Stress singularity occurs at the interface edges of adhesively bonded joints and it is required to analyze it. In this paper, the stress singularity using 2-dimensional elastic boundary element method (BEM) with the changes of the lap length and adhesive for single lap joint was analyzed, and experiments of strength evaluation were carried out. As the results, the evaluating method of bonding strength considering stress singularity at interface edges of adhesively bonded joints and stress intensity factor of interface crack have been proposed in static and fatigue test.

  • PDF

Strength Evaluation of Adhesively Bonded Single-Lap Joints by Ultrasonic Signal Analysis (초음파신호해석을 이용한 단순겹치기 접착이음의 강도평가)

  • Oh Seung-Kyu;Jang Chul-Sub;Han Jun-Young;Lee Won
    • Journal of Welding and Joining
    • /
    • v.22 no.5
    • /
    • pp.32-37
    • /
    • 2004
  • Application of bonding by adhesives can be found in many industries, particularly in advanced technological domains such as aeronautical and space, automobile and electronics industries. Periodic inspection with conventional ultrasonic NDE techniques is capable of indicating the presence and possible location of crack. Continuous ultrasonic attenuation monitoring has potential to supply information. This article discusses the use of pulse-echo ultrasonic testing for the inspection of adhesive bonds between metal sheets. The method is based on the measurement of the reflection coefficient at the metal/adhesive interface. By means of a control experiment it is shown that Quantitative Nondestructive Evaluation in Adhesive Joints are evaluated together with Ultrasonic Testing and Fracture Testing.