• Title/Summary/Keyword: 단상 열전달

Search Result 37, Processing Time 0.025 seconds

An experimental study on heat transfer augmentation in fluidized bed heat exchanger (유동층형(流動層形) 열교환기(熱交換器)에서 전열증진(傳熱增進)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Yoo, Ji-Oh;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.13 no.2_3
    • /
    • pp.91-106
    • /
    • 1993
  • The purpose of this study was to investigate the enhancement of heat transfer coefficient in double pipe fluidized bed heat exchangers. The inner tube used a smooth tube and a finned tube equipped with longitudinal fins. The heat transfer coefficients between the heated tube and fluidized bed of alumina beads were calculated as a function of fluidized velocity in various particle sizes($d_p$=0.41, 0.54, 0.65, 0.77mm) and static bed heights($H_o$=50, 100, 150, 200, 250mm). The coefficient for finned tube is higher than for smooth tube. And the maximum increasing rate is 7.8 times in smooth tube and 12.9 times in finned tube.

  • PDF

Analysis on Thermal Transfer Characteristics of 50 kVA Mold-Transformer (50[kVA] 몰드변압기 권선부의 열전달 특성 해석)

  • 이현진;정중일;허창수;조한구
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.3
    • /
    • pp.47-54
    • /
    • 2002
  • This paper presented the charcteristic of the thermal transfer in a 50[kVA] cast-resin dry type transformer. The conductivity of the primary winding composed were a Plenty of epoxy-resin ard a little of Cu was determined by that rating. Otherwise the conductivity of the secondary winding composed of a plenty of Cu and a little of epoxy-resin was determined by comparing the data of analysis using FEM method with those of temperature tests of the prototype cast-resin transformer. Based on the reults of the physical characteristics and the simulation by commercial using FEM method we established the prototype Model for this test. According to that Model, an analysis on variation of the temperature was discussed as a function of ambient temperature and velocities in the 50[kVA] cast-resin dry type transformer.

Experimental Study on Heat Transfer and Pressure Drop Characteristics for Single-Phase Flow in Plate and Shell Heat Exchangers. (Plate and Shell 열교환기의 단상유동 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 서무교;김영수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.4
    • /
    • pp.422-429
    • /
    • 2000
  • Plate and shell heat exchanger(P&SHE) is widely applied as evaporators or condensers in the refrigeration and air conditioning systems for their high efficiency and compactness. In order to set up the database for the design of the P&SHE, heat transfer and pressure drop characteristics for single phase flow of water in a plate & shell heat exchanger are experimentally investigated in this study. Single phase heat transfer coefficients were measured for turbulent water flow in a plate and shell heat exchangers by Wilson plot method. The shell side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a plate side were obtained by Wilson plot method. Single-phase heat transfer correlations based on projected heat transfer area and friction factor correlations have been proposed for single phase flow in a plate and shell heat exchanger.

  • PDF

Multi-objective Topology Optimization of Single Phase Induction Motor Considering Electromangetics and Heat Transfer (전자기와 열전달을 고려한 단상유도모터의 다분야 위상최적설계)

  • Shim Hokyung;Moon Heegon;Wang Semyung;Kim Myungkyun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.770-772
    • /
    • 2004
  • This paper presents a new approach regarding thermal characteristics associated with a design of the high efficiency motor. The adjoint variable design sensitivity equations for both electromagnetics with respect to permeability and heat transfer considering conduction and convection terms are derived using the continuum method. For multi-objective topology optimization, FEA is validated in terms of electromagnetics and heat transfer by experiments. The proposed method is applied to a single-phase induction motor of the scroll compressor in order to control the direction of heat flow by maximizing/minimizing the temperature of the target area while maintaining the efficiency.

  • PDF

A Study on the Heat Transfer Performance Using Various Grooved Heat Transfer Tubes (다양한 전열관 내부 홈 변화에 의한 열전달 성능에 관한 연구)

  • Han, K.I.;Chung, W.K.;Ye, S.S.;Park, S.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • Single-phase heat transfer performance and pressure drop for internally grooved tubes with angles were studied. Experiments were carried out in a counter flow heat exchanger with water as a working fluid. Two commercially available internally grooved tubes and smooth tube were tested. The internal diameter of the smooth tube was 16.5mm and the internal diameters of grooved tubes were 15.4mm, 14.9mm, 15.0mm, 16.7mm, respectively. Grooved angles in the tubes were $37^{\circ},\;43^{\circ},\;45^{\circ},\;50^{\circ}$, respectively. An experimental device to measure the friction factor and heat transfer coefficient was constructed. The experimental results were obtained for the fully developed turbulent flow of water in tube on the condition of uniform heat flux. As the increase of flow rate, Reynolds number, numbers of groove and grooved angle led to the increase of pressure drop. Also this paper showed that heat transfer rate increased with increasing numbers of groove and grooved angle. An empirical relation taken from this study represented most of the data within ${\pm}25%$.

  • PDF

A study of heat transfer characteristics on the Multi-pass Heat exchanger with Minichannel (다분지 미니 채널 열교환기의 액단상 열전달 특성에 관한 연구)

  • Im, Yong-Bin;Lee, Seung-Hun;Kim, Jeung-Hoon;Kim, Jong-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.357-362
    • /
    • 2006
  • This research focused on the multi-pass heat exchanger using the minichannel possessing the spring fin. An air-water was used as working fluid. The characteristics of liquid single phase heat transfer were verified. The compact heat exchanger (heat transfer area density : ${\beta}=2,146 m^2/m^3$), based on the shape of header(Top combining header), 63 minichannels ($D_i$ : 1.4 mm, L : 0.25 m) and the air side adopting the copper wire spring fin, was fabricated. The heat transfer area density of the air side was improved up to 161% when compared with the conventional fin-tube heat exchanger that adopts the heat transfer tube with the inner diameter of 5 mm. With regard to heat transfer performance, heat transfer rate per unit volume increased up to 142% when compared with the fin-tube heat exchanger adopting the heat transfer tube with the inner diameter of 5 mm.

  • PDF

Development of a Single Phase Shell-and-Tube Type Heat Exchanger Thermal Design Code Based on Stream Analysis (유동해석에의한 단상용 원통다관형 열교환기 열설계 코드의 개발)

  • 반태곤;이상천;남상철;박병덕
    • Journal of Energy Engineering
    • /
    • v.10 no.4
    • /
    • pp.299-309
    • /
    • 2001
  • This shell-and-tube heat exchanger design code based on stream analysis method was developed to design accurate and advanced heat exchangers. Several geometry factors which affect the heat exchanger design was explained. Stream analysis method to calculate flow fraction of each stream and heat exchanger design flow chart was introduced. Performance of developed simulation code was compared with Delaware09, Delaware10, DongHwa and ANL experimental data. The statistical results of performance evaluation indicated that most data points are predicted within $\pm$30%. But the pressure loss was over predicted.

  • PDF

A study of single-phase liquid cooling by multiple nozzle impingement on the smooth and extended surfaces (다중노즐에 의해 분사된 평면 및 확장면의 단상액체냉각에 관한 연구)

  • 소영국;박복춘;백병준
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.743-752
    • /
    • 1998
  • Experiments were performed to characterize single-phase heat transfer behavior of submerged liquid jet with multiple nozzle normally impinging on the smooth and extended surfaces. Arrays of 9 and 36 nozzles were used, with diameters of 0.5 to 2.0mm providing nozzle area ratio (AR) from 0.05 to 0.2. The square pin fin arrays were chosen as extended surfaces and the effects of geometrical parameters such as fin height, the ratio of fin width to channel width on heat transfer enhancement were examined. Single nozzle characteristics were also evaluated for comparison. The results clearly showed that heat transfer enhancement could be realized by using multiple nozzles at the constant volume flow rate. The average Nusselt number of multiple nozzle impingement on the smooth surface was correlated by the following equation : Nu/$Pr\frac{1}{3}=0.94 Re^{0.56}N^{-0.12}AR^{0.50}$The average heat transfer coefficients of multiple nozzle impingement on the extended surfaces decreased with increasing fin height and the ratio of fin width to channel width. The effectiveness of ex-tended surfaces ranged from 1.5 to 3.5 depending on the fin height, the ratio of fin width to channel width of pin fin arrays, nozzle number and nozzle area ratio.

  • PDF

Water Level Control of Nuclear Plant Steam Generator (원자력 발전소의 증기발생기 수위조절)

  • 이윤준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.753-764
    • /
    • 1992
  • The steam generator water level is difficult to control at low power due to its reversed responses to the feedwater flow, which are well known as the shrink and swell phenomena. With regard to this problem a new control scheme has been studied by which the level transients could be kept within permissible ranges at low power. The relations between the various input conditions to steam generator and the level transients have been examined to be expressed in the form of process transfer functions. Analog filters have been incorporated to be expressed in the process with proper control constants. This control scheme allows the prediction of level variation together with the corresponding feedwater rate and results in mider transients with good stabilites.

Heat transfer coefficients for single-Phase flow in a micro-fin tube (마이크로휜 관내의 단상유동 열전달계수)

  • 권정태;김무환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.423-430
    • /
    • 1998
  • Single phase heat transfer coefficients were measured for turbulent water flow in a micro-fin tube by using Wilson plot technique. An experiment for counterflow heat exchange between the micro-fin tube and its outer annulus passage was performed. The annulus side heat transfer resistance was varied and the overall heat transfer coefficients were measured. The single-phase heat transfer coefficients in a micro-fin tube were obtained by Wilson plot technique. Nusselt numbers based on the real heat transfer area and the nominal area were about 35% and 50% larger than those for smooth tube respectively Also, single-phase heat transfer correlations based on real heat transfer area and nominal area have been proposed for a micro-fin tube.

  • PDF