• Title/Summary/Keyword: 단부요소

Search Result 102, Processing Time 0.025 seconds

Wheel Load Distribution of Continous Reinforced Concrete Slab Bridge (연속 철근콘크리트 슬래브 교량의 윤하중 분포폭에 관한 연구)

  • 신호상;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.4
    • /
    • pp.135-143
    • /
    • 1998
  • The wheel load distribution width for lane load is not specified in current Korea bridge design code(KD code), not like in current AASHTO and AASHTO LRFD specifications which specity it as twice of wheel load distribution width for wheel load. In this study, the wheel load distribution width in continuous reinforced concrete slab bridge is investigated. The major variables affecting the wheel load distribution of a reinforced concrete continuous slab bridge are the span length, bridge width, existence edge beam and boundary condition. From a series of comprehensive parametric study on each variable, the formula for wheel load distribution in continuous reinforced concrete slab bridge is proposed from the nonlinear regression analysis of finite element analysis results. The proposed formulas can be used efficiently in the accurate design of continuous reinforced concrete slab bridges.

Load Transfer Mechanism of the Hybrid Beam-Column Connection System with Structural Tees (T 형강을 사용한 합성골조 보-기둥 접합부의 하중전달 메카니즘)

  • 김상식;최광호
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.823-829
    • /
    • 2002
  • The composite frame system with reinforced concrete column and steel beam has some advantages in the structural efficiency by complementing the shortcomings between the two systems. The system, however has also a lot of problems in practical design and construction process due to the material dissimilarities. Considering these circumstances, this research is aimed at the development of the composite structural system which enables the steel beams to be connected to the R/C columns with higher structural safety and economy. Basically the proposed connection system is composed of four split tees, structural angles reinforced by stiffener, high strength steel rods, connecting plates and shear plates. The structural tests have been carried out to verify the moment transfer mechanism from beam flange to steel rods or connecting plates through the angle reinforced by siffener. The four prototype specimens have been tested until the flange of beam reached the plastic states. From the tests, no distinct material dissimilarities between concrete and steel have been detected and the stress transfer through wide flange beam - structural angle - high strength steel rod or connecting plate is very favorable.

Evaluation of Floor Vibration Existing in Apartment Building (기존 아파트 바닥의 수직진동 성능 평가)

  • Han Sang Whan;Lee Min Jung
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.221-228
    • /
    • 2004
  • In recent years building floors become larger and more spacious due to the development of new design methods and high strength and light weight materials. However, such long span floor systems may provide smaller amount of damping and have a longer period so that they may be more vulnerable to the floor vertical vibration. In Korea when floors are to be checked against the floor vertical vibration, the provisions developed in foreign countries have been used. However these guidelines have been developed based on human perception, which may vary from country to country. Also, Korea have particular floor systems, such as flat plate floor system of apartment building. This study attempts to evaluate the vibration performance of the floors in typical apartment buildings. Two different floors with the area of $28 m^2$ and $32 m^2$ were investigated. The criteria provided by ATC-1(1999), AISC-11(1997), AIJ(1991) and the local criteria developed in the previous study(Han, 2003) was used to check the acceptability of the floor vertical vibration.

Cyclic Seismic Testing of Cruciform Concrete-Filled U-Shape Steel Beam-to-H Column Composite Connections (콘크리트채움 U형합성보-H형강기둥 십자형 합성접합부의 내진성능)

  • Park, Chang-Hee;Lee, Cheol-Ho;Park, Hong-Gun;Hwang, Hyeon-Jong;Lee, Chang-Nam;Kim, Hyoung-Seop;Kim, Sung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.503-514
    • /
    • 2011
  • In this research, the seismic connection details for two concrete-filled U-shape steel beam-to-H columns were proposed and cyclically tested under a full-scale cruciform configuration. The key connecting components included the U-shape steel section (450 and 550 mm deep for specimens A and B, respectively), a concrete floor slab with a ribbed deck (165 mm deep for both specimens), welded couplers and rebars for negative moment transfer, and shear studs for full composite action and strengthening plates. Considering the unique constructional nature of the proposed connection, the critical limit states, such as the weld fracture, anchorage failure of the welded coupler, local buckling, concrete crushing, and rebar buckling, were carefully addressed in the specimen design. The test results showed that the connection details and design methods proposed in this study can well control the critical limit states mentioned above. Especially, the proposed connection according to the strengthening strategy successfully pushed the plastic hinge to the tip of the strengthened zone, as intended in the design, and was very effective in protecting the more vulnerable beam-to-column welded joint. The maximum story drift capacities of 6.0 and 6.8% radians were achieved in specimens A and B, respectively, thus far exceeding the minimumlimit of 4% radians required of special moment frames. Low-cycle fatigue fracture across the beam bottom flange at a 6% drift level was the final failure mode of specimen A. Specimen B failed through the fracture of the top splice plate of the bolted splice at a very high drift ratio of 8.0% radian.

A taxonomic study on section Atratae of Carex L. in Korea (Cyperaceae) (한국산 사초속 감둥사초절의 분류학적 연구)

  • Oh, Yong Cha;Lee, Chang Shook;Ryu, Kyung Jin
    • Korean Journal of Plant Taxonomy
    • /
    • v.31 no.3
    • /
    • pp.223-251
    • /
    • 2001
  • Morphological characters of section Atratae of the genus Carex (Cyperaceae) were reexamined. The epidermal patterns of perigynium, achene and leaf were investigated using by a scanning electron microscope (SEM) and a light microscope (LM). Morphological characters such as length and width of stem, leaf, bract, spike, scale, perigynium and achene, and shape of cross-sectioned stem, and leaf, spike, scale, apex of scale, perigynium, beak of perigynium and achene, and epidermal pattern of perigynium, achene and leaf (shape of fundamental epidermal cell and cell wall, type of silica body, shape of beak epidermal cell and cell wall in perigynium, subsidiary cell shape, size and frequency of stomatal complex of leaf) were useful for the identifications of the observed seven taxa. C. gmelinii, C. hancokiana and C. peiktusani have been confused each other due to similar morphological characters. Howerever these taxa were distinct with respect to shape of scale, apex of scale, perigynium, type of silica body, frequence of stomatal complex, subsidal cell shape, and epidermal patterns of achene and leaf.

  • PDF

State-of-the-art Node of Freeform Structure (프리폼 구조의 노드 기술 현황 분석)

  • Lee, Kyoung Ju;Oh, Jin Tak;Kim, Sang Dae;Ju, Young Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.153-153
    • /
    • 2011
  • 현대 건축은 기능적이고 합리적이었지만 획일적이었던 박스형 건축에서 탈피해 형태와 공간에 있어서 다양한 변화를 시도하고 있다. 특별한 건축물의 실현을 위해 각 나라의 기술력은 급속한 발전을 이루었고, 보다 더 독특한 건축물에 대한 관심은 비정형 건축물에 대한 관심의 증대로 이어지고 있다. 이러한 비정형 건축물에 적합한 구조로써 프리폼(Free-Form) 구조가 있다. 프리폼 구조로 입체골조(Double Layered Structure)를 많이 사용하였으나, 최근 유리로 되어 투명하고 기하학적 모양의 건축물을 추구함에 따라 평면골조(Single Layered Structure)가 증가하고 있는 추세이다. 평면골조는 축력 지배형과 모멘트 지배형으로 분류할 수 있고 프리폼 구조의 구성 요소 중 가장 취약하고 중요한 부분은 노드이다. 본 연구에서는 프리폼 구조 중 가장 큰 관심이 고조되고 있는 평면골조 모멘트 지배형의 노드에 대한 국내외 기술 분석을 통해 향후 연구 방향성을 제시하고자 한다. 입체골조는 하나의 노드에 여러개의 부재가 3차원으로 결합되어야 하기 때문에 다른 골조 시스템에 비해 노드부가 복잡하지만, 건축물의 외관을 유리로 하여 투명하게 하고 비틀리고 구부러진 구조물에 대한 건축적 요구가 많아짐에 따라 평면골조의 인기가 높아지고 있다. 이러한 시대의 흐름에 발맞추어 건물의 구조적, 기하학적 요구를 충족시키기 위해 다양한 노드 시스템이 개발 중이며, 가해지는 하중의 특성에 따라 축력 지배형과 모멘트 지배형으로 구분하여 노드의 양상을 분류할 수 있다. 축력 지배형의 대표적인 시스템은 다이아그리드(Diagrid)이다. 축력 지배형 프리폼 구조의 노드는 전체 구조물의 하중을 축력으로 받아 모두 전달해야 하기 때문에 크기가 크고 가새가 2~4개층에 걸쳐서 설치되기 때문에 중량이다. 모멘트 지배형 노드를 갖는 프리폼 구조의 형태는 대부분 지붕 구조로써 지붕 자체의 하중만을 견디도록 설계된다. 따라서 노드부와 노드에 붙는 부재들이 가볍기 때문에 사람이 들 수 있고 노드의 크기가 작아 시공성이 좋으며 대량 생산이 가능하다는 장점이 있다. 노드의 형태는 힘의 흐름과 쓰임에 따라 다양하다. 평면골조 모멘트 지배형의 노드는 접합방식에 따라 Splice node connection과 End-Face node connection 두 가지로 분류할 수 있다. Splice node connection은 각 부재의 종축으로 노드와 구조부재 사이에 이음재를 두어 연결하고, 연결 형태에 따라 전단력을 전달할 수 있는 1~2개의 접촉면이 생긴다. 전단응력을 받는 볼트로 이음재를 이어 조립하거나 용접으로 접합할 수 있다. 대표 노드로, SBP-1, SBP-2와 POLO-1 등이 있다. End-Face node connection은 각 연결된 부재의 단부와 노드 사이의 연결면은 종축방향의 수직이고, 인장응력을 받는 볼트를 사용하거나 용접에 의해 접합할 수 있다. 대표 노드로 SBP-4, WABI-1, MERO-1(Cylinder), MERO-2(Block), MERO-4(Double Dish) 등이 있다. 본 기술 현황 분석을 통해 현재 개발된 노드를 분류하고 가장 관심이 높은 Single Layer 모멘트 지배형 노드를 비교, 분석하였다. 최근 건물의 경향을 반영한 프리폼 구조를 실현하기 위해서 필수적인 노드의 개발은 국외에서 활발히 연구되고 있지만 그 기술이 개방되어 있지 않다. 국내에서는 동대문 디자인 플라자에 새로운 노드를 적용하고 고려대학교에서 모멘트 지배형 노드를 개발하는 등 발전 가능성을 보이고 있지만 국외 사례들에 비하면 아직 초기 단계라 할 수 있다. 따라서 현장 용접을 지양하고 공장 제작하여 현장에서 조립하며, 프로젝트 별로 상이한 노드를 사용하는 것이 아닌 다양한 요구를 효과적으로 수용하는 구조 효율성을 향상시킨 노드 상세의 개발이 이루어져야 할 것이다.

  • PDF

Seismic Performance of Special Shear Wall Structural System with Effectively Reduced Reinforcement Detail (완화된 단부 배근상세를 갖는 특수전단벽 구조시스템의 내진성능평가)

  • Chun, Young-Soo;Lee, Ki-Hak;Lee, Hyo-Won;Park, Young-Eun;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.271-281
    • /
    • 2013
  • The current seismic design code prescribes that a structural wall should be designed as a special shear wall when the building height is more than 60 m and its seismic design category is classified as D. However, the use of a special shear wall has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of a special shear wall and a special shear wall with relaxed reinforcement detail was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the reinforcement details of the special boundary element. Next, the seismic performances of a special shear wall structural system and that of a special shear wall structural system with relaxed reinforcement detail was evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of the shear wall with relaxed reinforcement detail was almost similar to the performance of a special shear wall and has the performance which requested from standard. The results of the seismic evaluation showed that all special shear walls with relaxed reinforcement detail are satisfied with the design code and seismic performance.

Behavior of C-Shaped Beam to Square Hollow Section Column Connection in Modular Frame (모듈러 골조의 각형강관 기둥과 C형강 보 접합부의 거동 평가)

  • Lee, Sang Sup;Park, Keum Sung;Hong, Sung Yub;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.471-481
    • /
    • 2015
  • Modular building is a prefabricated construction system for building where factory-produced pre-engineered modular units are delivered to site and assembled as substantial elements of a building. There are two basic kinds of modular structures. One is a load-bearing wall structure designed to transfer the load through longitudinal walls. The other is a frame structure composed of columns and beams. For frame structure, square hollow section is often used as a column member and channel as a beam member in modular unit. Lower and upper modules are fasten with bolts via a pre-installed access hole in the SHS column. However, the access holes can weaken the panel zone that would affect the behavior of beam to column connection. The 5 specimens of beam to column connections with parameters of access hole, column thickness and diaphragm were made and this paper describes the test results.

An Experimental Study on Structural Characteristics of Beam-to-Column Connections with Plastic Deformation in the End-Plate (엔드플레이트 항복형 보-기둥 접합부의 구조특성에 관한 실험적 연구)

  • Lee, Seong-Hui;Lee, Se Jung;Yang, Il Seung;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.6
    • /
    • pp.585-596
    • /
    • 2009
  • In the construction of end-plate connections, the end-plate is welded to the end of the beam in a factory and fastened by bolts in the field. This connection is widely used in advanced countries such as European countries and the U.S. Its design and connection details are prescribed in Eurocode 3, AISC LRFD, and FEMA 350. In Korea, the standards for seismic design in KBC 2005 have been reinforced based on IBC 2000 in the U.S., and it is expected that the connection details in the U.S. will be adopted for the establishment of beam-to-column design standards. In the U.S. thick end-plates are used for the connections to prevent beam rupture. The use of the connections in Korea, however, may lead toover-design. In this experimental study, the design standards for the end-plate connections provided by FEMA-350 were analyzed and structural tests for six specimens were conducted with the variables being the shim plate and the connection shape, to provide the best specifications for connections with plastic deformation in the end-plate for use in Korea.

A Case Study on Cause Analysis for Longitudinal Crack of Duct Slab in Tunnel (터널 덕트슬래브의 종방향 균열에 대한 원인 분석 사례 연구)

  • Park, Sung Woo;Park, Seung Su;Hwang, In Baek;Cha, Chul Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2012
  • In this study, cause of longitudinal crack which is found on duct slab of road tunnel is studied. In-depth investigation, such as visual inspection, non-destructive testing and geometrical surveying of duct slab, is carried out. In order to perform cause analysis, the investigated results are compared to the results of numerical analysis. Many factors, which cause longitudinal crack, are classified as constrained condition of the duct slab, location of the rebar, temperature, shrinkage and so on. According to the classified causes of longitudinal crack, numerical analysis is performed considering construction stage of the tunnel lining. Especially, in order to predict shrinkage stain due to discrepancy of curing date, ACI-209 model, KCI structural design code and other researcher's shrinkage test results are compared. The results show that shrinkage strain is one of the main factors causing longitudinal crack. Other investigated tunnels are classified along with the construction method of duct slab and patterns of cracks. As a result, improving ways to construct duct slab are suggested.