본 논문에서는 생물학적 실험에 의해 추출된 이종의 단백질 콤플렉스를 통해 대상 종의 콤플렉스를 단백질 상호적용 네트워크에서 예측할 수 있는 방법을 제안한다. 이 예측은 먼저 이종사이에 단백질의 비교를 통해 상동성을 색인한 다음, 이 상동성을 이용하여 이종의 콤플렉스를 대상 종으로 변형하고 그 형태를 단백질 상호작용 네트워크에서 탐색하는 과정으로 수행된다. Swiss-Prot 데이터 베이스의 단백질들을 대상으로 상동성 색인을 색인하였으며, 콤플렉스 형태를 분석하기 위해 DIP의 단백질 상호작용 네트워크를 이용하였다.
2012년 G 단백질 연결 수용체(G-Protein Coupled Receptors ; GPCR) 연구가 노벨 화학상을 받았다. 상당히 많은 병과 관련되어 있어 잠재력이 크고, 많은 연구가 진행 중이다. 현재 리간드와 단백질간의 정전기적 포텐셜 연구를 통한 예측 연구가 진행되고 있지만, GPCR과 리간드 간의 연구에서 아직 리간드의 전하를 통한 단백질과 리간드간의 상호작용 예측 연구가 되어 있지 않다. 그렇기 때문에 이번 연구에서는 8가지 방법으로 전하(charge)를 띠게 하여서 단백질과 리간드의 상호작용을 계산을 통하여 예측하여 보았다.
단백질들은 서로 다른 단백질들과 상호작용 하거나 복합물을 형성함으로써 생물학적으로 중요한 기능을 한다고 알려져 있다. 때문에 대부분의 세포작용에 있어 중요한 역할을 하는 단백질 상호작용의 분석 및 예측에 대한 연구는 여러 연구그룹으로부터 풍부한 데이타가 산출되고 있는 현(現) 게놈시대에서 또 하나의 중요한 이슈가 되고 있다. 본 논문에서는 효모(Saccharomyces cerevisiae)에 대해 공개되어있는 단백질 상호작용 데이타들에서 속성들 간의 연관을 통해 유추 가능한 잠재적 단백질 상호작용들을 예측하기 위한 연관속성 마이닝 방법을 제시한다. 단백질의 속성들 중 연속값을 가지는 속성값들은 최대상호 의존성에 기반을 두어 이산화 하였으며, 정보이론기반 속성선택 알고리즘을 사용하여 단백질들 간의 상호작용 예측을 위해 고려되는 단백질의 속성(attribute) 수 증가에 따른 속성차원문제를 극복하도록 하였다. 속성들 간의 연관성 발견은 데이타마이닝 분야에서 사용되는 연관규칙 발견(association rule discovery) 방법을 사용하였다 논문에서 제안한 방법은 발견된 연관규칙을 통한 단백질 상호작용 예측문제에 있어 최대 약 96.5%의 예측 정확도를 보였으며 속성필터링을 통하여 속성필터링을 하지 않는 기존의 방법에 비해 최대 약 29.4% 연관규칙 발견속도 향상을 보였다.
세포 내에서 일어나는 단백질 신호 전달 과정은 단백질간의 상호작용을 통해 수행되고 조절된다. Yeast 상호작용 정보와 녹색형광단백질(GFP)을 이용하여 밝혀진 약 5,000여 개의 Yeast 단백질 위치정보를 이용하여 가중치를 부여하고 신호 전달경로 추출 및 예측을 위한 고성능 LocSPF 알고리즘을 최초로 제안하였다. 가중치 알고리즘에 의해 산출된 결과 중 의미 상관도가 높은 것을 채택한 후 KEGG에서 제공하는 신호전달 경로와 같은 신호전달 경로를 추출하는지 유사도 비교를 하였다. 한편 더 나아가 아직 실험을 통해 밝혀지지 않은 단백질 신호전달 경로를 예측하여 결과를 제시함으로써 본 연구를 통해서 알려지지 않은 새로운 신호전달 경로를 발견하거나 이전 경로에 참여하지 않은 단백질들을 발견할 수 있는 가능성을 제시 하였다.
도메인 기반 단백질 상호작용 예측 기법은 지난 몇 년 동안 활발히 연구되어 왔다. 도메인 기반 접근 방법 중에서도 도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법은 예측 정확도면에서 다른 기법보다 월등한 결과를 보여주고 있다. 그러나 학습 집단을 사용하는 특징 때문에 전체 도메인 정보를 이용할 수 없는 단점이 있다. 또한, 이 시스템은 도메인 정보가 부족하여 다른 기능을 하는 단백질이라도 같은 도메인 정보를 보여주기 때문에 예측 시스템의 결점을 드러내고 있다. 도메인 조합 기반 단백질 상호작용 가능성 순위 부여 기법은 InterPro 데이터베이스의 도메인 정보를 기반으로 사용한다. InterProScan은 InterPro의 여러 멤버 데이터베이스의 정보를 기반으로 Sequence 분석을 하는 소프트웨어로써 검색 후 단계에서 찾아낸 결과들을 e-value를 기반으로 여과한다. 본 논문에서는 제시된 e-value를 조정 방법을 사용함으로써 단백질 내 도메인 패턴의 다양화와 기존 도메인 정보가 없던 단백질의 도메인을 새롭게 발견할 수 있으나 접근 방식의 한계가 존재함을 확인할 수 있었다.
단백체는 세포가 처해있는 환경에 따라, 그리고 각 조직 별로 유동적으로 존재하며, 세포의 실제적인 기능을 표현해준다. 이러한 이유로 세포 내에서 일어나는 실제적인 현상들을 전체 단백질 단계에서 통합적으로 파악하고자 하는 단백체학 연구가 활발하게 진행되고 있다. 미지의 단백질의 기능을 밝혀내는 연구는 단백체학의 가장 기본적이면서 중요한 부분이라고 할 수 있다. 본 논문에서는 "단백질 상호작용 네트웍 사전(PIND)"을 구축함으로써 단백질의 기능을 예측하는 새로운 방법론을 소개한다.
Post-genomic 시대에 접어들면서 단백질의 기능의 주석이 중요한 문제로 떠오르기 시작하였다. 이런 단백질 기능을 예측하기 위해 단백질 상호작용(Protein-Protein interaction) 데이터를 이용한 방법들이 지난 10여 년간 발표되어왔다. 단백질 상호작용(Protein-Protein interaction) 데이터는 단백질들 간의 서열 등의 특징을 이용해 상호간의 연결 관련성이 있는 단백질끼리의 관계를 네트워크로 나타낸 자료이다. 현재 이러한 단백질 상호작용(Protein-Protein interaction) 데이터들은 MIPS, DIP, BioGrid등 약 5~6군데에서 제공되고 있다. 각각의 데이터는 다른 형식을 가지고 있고, 중복되는 정보도 포함하고 있다. 여러 연구 방법에서 데이터를 사용할 때 한군데에서만 추출하기 보다는 여러 데이터에서 추출하는 경우가 많기 때문에 다른 형식의 데이터를 이용하는데 불필요한 수고가 들어가게 된다. 때문에 여러군데의 데이터를 한 가지 형식으로 맞추어 통합적으로 구축하여 연구 시 데이터 사용에 용이하도록 설계 하였다. 또한 발표된 단백질 기능 예측 방법에 대한 정리를 통해 앞으로의 연구를 하는데 있어서 필요한 자료를 얻고 열람할 수 있도록 설계하였다. 이를 통해 관련 연구를 하거나 관심이 있는 사람들의 데이터를 검색하는데 많은 도움이 될 것이다.
최근 SARS-CoV-2 백신들의 예방접종이 진행됨에 따라 코로나 19 팬데믹의 종결이 예상되고 있다. 하지만 계속해서 출현 중인 변종 바이러스들은 팬데믹 종결의 위험요소로 남아있다. 본 논문에서는 사전학습된 단백질 BERT와 단백질-단백질 상호작용 모델을 활용한 SARS-CoV-2 스파이크 단백질의 변이 예측 분석 알고리즘을 제안한다. 제안하는 기술은 변이 단백질 서열의 예측과 변이 단백질과 human ACE2 수용체의 친화도에 따른 자연선택으로 이루어진다. 이를 통해 시간이 지나며 나타날 수 있는 변종 바이러스들을 시뮬레이션 할 수 있어 변종 바이러스들의 해결에 기여할 것으로 기대된다.
생명체의 기본 정보가 저장된 DNA에서 생성되는 단백질은 생명 현상의 중요한 기능적 역할을 수행하기 때문에 단백질과 관련된 다양한 연구가 진행되고 있다. 본 논문에서는 단백질간 상호작용(protein-protein interaction)을 예측하기 위해 시스템을 통계학적 모델인 Support Vector Machine(SVM)을 사용하였다. SVM 시스템은 상호작용이 있는 데이터(긍정예제)와 상호작용이 없는 데이터(부정예제)를 입력으로 하여 모델링 생성과 테스트를 하는데, 상호작용이 있는 데이터는 DIP에 있는 interaction list로 해결이 가능하지만 상호작용이 없는 데이터는 현재 존재하지 않기 때문에 이를 생성하기 위한 생성방법이 필요하다. 이 논문에서는 shuffling, non-interaction list, 그리고 앞의 두 방법을 보완하는 non-interaction list + shuffling이라는 방법을 제시하고 기존의 실험 결과를 상회하는 부정예제 생성방법을 제시한다.
계산을 통한 단백질 상호작용 예측 기법의 중요성이 제기되면서 많은 단백질 상호 작용 예측 기법이 제안되고 있다. 하지만 이러한 기법들이 일반 사용자가 손쉽게 사용할 수 있는 서비스 형태로 제공되고 있는 경우는 드물다. 본 논문에서는 현재까지 알려진 단백질 상호작용 예측 기법 중 예측 기법의 완성도가 높고 상대적으로 예측 정확도가 높은 것으로 알려진 도메인 조합 기반 단백질 상호 작용 예측 기법을 이용하여 서비스 시스템으로 설계하고 구현하였다. 효모(Yeast)의 단백질 집합에 대하여 학습한 후, 학습된 단백질 집합과 공통된 도메인을 가지지만 학습 집합에 존재하지 않는 단백질 쌍들에 예측 기법을 적용하여 매우 높은 $77\%$의 민감도(sensitivity)와 $95\%$의 특이도(specificity)를 보였다. 더불어 DIP CORE, HMS-PCI, TAP 데이타의 테스트를 통해서 이 기법의 안정성을 확인하였다. 시스템의 기능들은 핵심 기능, 부가 기능 그리고 일반 서비스 기능으로 분류하였다. 시스템 설계의 주요 목표인 성능, 개방성 그리고 확장성에 따라, 개별 서비스들은 병렬화, 웹 서비스 표준 준수 및 계층화된 구조화를 지원하도록 구현하였다. 본 논문에서는 몇 가지 대표적인 사용자 인터페이스와 상세한 사용 지침도 소개한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.