• Title/Summary/Keyword: 단백질과 에너지대사

Search Result 140, Processing Time 0.026 seconds

Effects of Dietary Beef Tallow, Soybean Oil and Squid Liver Oil on Growth and Body Composition of the Korean Rockfish Sebastes schlegeli, and Biochemical Changes with Starvation (사료 지질원으로 우지, 대두유 및 오징어 간유 첨가에 따른 조피볼락 Sebastes schlegeli의 성장 및 체성분 변화와 절식시 체내 대사)

  • LEE Sang-Min
    • Journal of Aquaculture
    • /
    • v.7 no.1
    • /
    • pp.63-76
    • /
    • 1994
  • The effects of different dietary lipids on growth, body chemical composition, and nutrient partition of the Korean rockfish (43 g of initial mean weight) were studied. Fish were fed three experimental diets containing 1) $4.5\%$ squid liver oil, 2) $1\%$ squid liver oil and $3.5\%$ beef tallow, and 3) $1\%$ squid liver oil and $3.5\%$ soybean oil. Growth and feed efficiency were detarmined during a 19-week feeding period at water temperature of $15.5^{\circ}C$, and at the end of which body chemical compositions were analyzed. Remained fish were fasted for 45 days, and four fish were taken at 6, 12 and 24 hours, and 3, 15 and 45 days after the fasting to determine tissue compositions and hematological changes. Growth, feed efficiency, protein and lipid retention efficiency, hepatosomatic index(HSI), viscerosomatic index (VSI), and chemical composition of whole body and dorsal muscle were not affected by the different dietary lipids. Liver moisture content of fish fed squid liver oil diet was higher than that of fish fed beef tallow or soybean oil diet. Liver lipid content of fish fed beef tallow diet was higher than that of fish fed the other diets. Fatty acid composition of dorsal muscle and liver were affected by the different dietary lipids ; high levels of 20 : 5n-3 and 22 : 6n-3 from fish fed the diet containing squid liver oil, 18 : 1 from fish fed the diet containing beef tallow, and high 18 : 2n-6 and 18 : 3n-3 from fish fed the diet containing soybean oil were observed. Both HSI and VSI of fish fed three diets decreased with time after the begining of starvation. Liver glycogen did not change during the first 15 days of starvation and decreased thereafter, and that was not affected by the different dietary lipids. Lipid and protein contents in the dorsal muscle of fish decreased up to 15 days of starvation and remained unchanged thereafter, these were not different from each other. Glucose, free fatty acid, triglyceride and phospholipid concentrations in Fish serum were varied for the first 15 days of starvation, after that the concentrations of fish serum remained relatively stable in all the treatment groups with prolonged starvation. The results indicate that Korean rockfish can utilize fish oil, animal fat or vegetable oil equally as energy source when n-3HUF A is adquate.

  • PDF

Influence of Sulfur Fertilization on Quality Characteristics and Antioxidant Activities of Onions during Storage at 4℃ (유황처리가 4℃ 저장 중 양파의 품질 특성 및 항산화 활성에 미치는 영향)

  • Jo, Hyeri;Surh, Jeonghee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1776-1783
    • /
    • 2016
  • Onions cultivated with (SY) or without (SN) sulfur application were stored for up to 36 weeks at $4^{\circ}C$ since harvest, after which they were analyzed for chemical composition and antioxidant activity in relation to sulfur (S) application and storage duration. Compared with SN onions, SY onions showed lower moisture and higher protein, soluble solids, and flavonoid contents at the time of harvest, and moisture and protein contents remained the same until 20 weeks of storage. However, soluble solids decreased while antioxidant activities, including flavonoids content, total reducing capacity, and superoxide dismutase (SOD)-like activity, appreciably increased as storage time increased to 20 weeks, which could be attributed to onion respiration and protective response to environmental stresses, respectively. There were abrupt decreases in flavonoid content and SOD-like activity at 36 weeks, presumably due to severe deterioration. Interestingly, all phenomena observed depending on storage time were independent of S application of onions. The results show that the critical factor influencing the chemical composition and antioxidant activity of onions during storage was postharvest storage duration rather than S application during onion cultivation.

Effects of Frequency of Meals on Energy Utilization and Body Composition of Sheep Ingesting Diets of Equal Amount (급식회수(給食回數)가 면양(緬羊)의 열량대사(熱量代謝) 및 조직(組織)의 화학적성분(化學的成分)에 미치는 영향)

  • Han, In-K.
    • Applied Biological Chemistry
    • /
    • v.8
    • /
    • pp.21-28
    • /
    • 1967
  • Two experiments with 32 sheep were conducted to study the effects of feeding the same amount of diet per day at different meal frequencies on ration digestibility, energy utilization, rate of gain, body composition and efficiency of gain. The results obtained are as follows: (1) The ingestion by sheep of the same amount of feed per day in 8 meals, 1 meal plus 7 ruminal inflations-deflations, and in 1 meal caused no different effect in the digestibility of the nutrients and energy, or the ME value of the diet. (2) Heat production per unit of metabolic size per unit of dietary intake was markedly lower for sheep ingesting 8 meals or administered 1 meal plus 7 ruminal inflations-deflations per day than for sheep fed 1 meal per day. (3) Body weight gain was significantly greater by sheep fed 8 meals per day or 1 meal plus 7 ruminal inflations-deflations than by those fed 1 meal per day. However, the gain in DM and energy of wool was not affected by frequency o( meals. (4) Sheep ingesting 8 meals or administered 1 meal plus 7 ruminal inflations-deflations per day gained body protein, fat and energy at a more rapid and efficient rate than sheep fed 1 meal per day. (5) Sheep fed 8 meals per day gained greater proportion of fat, protein and ash in the gained portion of the bodies than did 1 meal fed sheep. (6) An attempt was made to establish the possible explanations by which the frequency of ingesting meals exerts its effects.

  • PDF

Influence of Corn Processing and Rumen Undegradable Protein Levels on Performance of Holstein Cows during the Transitional Period (옥수수 가공형태와 RUP 수준이 전환기 젖소의 생산성에 미치는 영향)

  • Kim, H.S.;Lee, J.S.;Kim, Y.G.;Lee, W.S.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.1001-1008
    • /
    • 2005
  • This study examined the effect of corn processing with varying rumen undegradable protein (RUP) on feed intake, milk yield, its composition and, blood characteristics in Holstein cows during the transitional period (21 days pre partum to 21 days post partum). Twenty Holstein cows were randomly assigned to four diets (five cows/diet), ground corn with 30 % RUP (GCR30), ground corn with 40 % RUP (GCR40), flaked corn with 30 % RUP (FCR30), and flaked corn with 40 % RUP (FCR40). The processed corn with varying RUP was fed in total mixed rations (TMR) to cows. Dry matter intake (DMI) was higher with 40 % RUP diet than with 30 % RUP diet, resulting in higher protein and energy intake by cows during pre and post partum (p<0.05). However, it was not affected by corn processing during pre and post partum. Similarly milk yield was higher with 40 % RUP diet than with 30 % RUP diet. and milk yield was affected by corn processing at RUP 30 % level. Corn processing did not affected the milk fat and protein contents in dairy cows. The concentration of blood non esterified fatty acid (NEFA) were effected by RUP level with flaked corn, however, it was non-significant with RUP levels when given with ground corn. It is concluded that increasing RUP from 30 % to 40 % in iso-nitrogenous diet could increase milk yield in dairy cows during the transitional phase.

Effect of Physiologically Active Compounds Isolated from Platycodon grandiflorum on Streptozotocin-Induced Diabetic Rats (장생도라지 생리활성물질이 Streptozotocin으로 유발된 당뇨쥐에 미치는 영향)

  • 서종권;정영철;전성식;이영우;이수정;손미예;성낙주
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.6
    • /
    • pp.981-986
    • /
    • 2004
  • This study were investigated the effects of physiologically active compounds isolated from Platycodon grandiflorum on streptozotocin-induced diabetic rats. The experimental groups were divided into six groups, normal, diabetic control (CM), and four experimental groups (inulin (IN), inulin + saponin (IS), oligosaccharide (OS), and total extract group (WE)). The rats have free access to water and diet. Experimental groups were administered orally with inulin (630 mg/mL), inulin (630 mg/mL) + saponin (25.2 mg/mL), oligosaccharide (367.5 mg/mL), and total extract (225 mg/mL) into the diabetic rats for 5 weeks after STZ injection; The levels of fasting blood glucose in diabetic control increased by 10.0% for 5 weeks, but the level of blood glucose in inulin and total extract groups decreased by 21.3% and 21.2%, respectively. The concentrations of total cholesterol and triglyceride in serum of diabetic rats fed physiologically activity compounds were lower than those in diabetic control rats. HDL-cholesterol was similar among all the groups. Weights of testicle and heart were lighter, while weight of kidney was significantly increased in diabetic groups than normal group. The concentrations of serum protein insulin and albumin in diabetic groups were significantly decreased compared with those of the normal group. Urinary glucose excretion was decreased in inulin group than other diabetic groups.

Bone Health and L-ascorbic acid in Postmenopausal Women (폐경 여성의 골 건강과 L-ascorbic acid)

  • Kim, Bokyung;Kim, Mihyang
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1142-1148
    • /
    • 2021
  • As the average human lifespan has been extended, there has been a lot of interest in the quality of life of women after menopause. It is known that the average age of menopause among Korean women is 49.7 years, and the post-menopausal life of a woman takes up more than one third of her life. L-ascorbic acid (AsA) is known to be involved in the synthesis and maturation of collagen, a bone constituent protein. The aim of this review is to discuss the potential of AsA in bone health in postmenopausal women. AsA plays an important role in collagen biosynthesis, and collagen is a protein constituting bone and is a necessary material for calcification of the bone matrix. Collagen crosslinking is necessary for the stabilization and elasticity of collagen fibers during growth and matruation of animals, but an excessive increase is likely to lead to further aging because the movement of intercellular nutrients or waste is suppressed. AsA acts as a reducing agent to stabilize the immature collagen crosslinking and suppress pyridinoline production, a mature crosslinking. Therefore, AsA participates in collagen biosynthesis and helps bone tissue health, while regulating the excessive maturation of collagen crosslinking, it is expected to play an important role in bone-related problems that may occur in postmenopausal women.

Elderly Sarcopenia and Vitamin B Deficiency: A Relationship? (비타민 B 결핍에 의한 노인성 근감소증)

  • Kisang Kwon;Hye-Jeong Jang;Sun-Nyoung Yu;Soon-Cheol Ahn;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.7
    • /
    • pp.574-585
    • /
    • 2023
  • Sarcopenia is a leading cause of increased medical and nursing care costs among the elderly. In Korea, preventive measures for sarcopenia are mostly targeted toward the general elderly population without specific diseases. However, it is also necessary to implement measures for elderly individuals living in nursing homes and hospitals, where the prevalence of sarcopenia is high. Currently, computed tomography and/or magnetic resonance imaging are considered standard diagnostic tools. However, their complexity and time-consuming nature make them unsuitable for clinical use. The exact pathophysiological mechanisms of sarcopenia are unclear, as they involve various molecular biological pathways, including decreased exercise, protein and nutrient intake, changes in testosterone and growth hormone, and inflammation. Sarcopenia symptoms can lead to several diseases, such as osteoporosis, fractures, dementia, diabetes, and cardiovascular disease. Vitamin B deficiency is a significant factor in sarcopenia induction, with B vitamins being directly involved in energy and protein metabolism and nerve function. Vitamin B deficiency can lead to neuromuscular and neurogenic disorders, which often overlap with sarcopenia. Suboptimal intake of B vitamins, malabsorption, and anorexia are common among the elderly. This study aims to provide information on the role of water-soluble B vitamins in preventing and controlling muscle mass loss and deterioration among the elderly with sarcopenia. In addition, we discuss the potential of myokines from the B vitamin family in modulating sarcopenia.

$17{\beta}$-Estradiol Regulates the Expression of Nesfatin-1/NUCB2 in Mouse Uterus ($17{\beta}$-Estradiol에 의한 생쥐 자궁 내 Nesfatin-1/NUCB2 발현 조절)

  • Kim, Jin-Hee;Lee, Kyoung-Ran;Kim, Hyeon-Kyeong;No, So-Hyeon;Yoo, Hye-Min;Moon, Chan-Il;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.349-357
    • /
    • 2011
  • Since nesfatin-1/NUCB2 involved in the control of appetite and energy metabolism was discovered for the first time in hypothalamus, many reports have shown its expression in various tissues. We also recently demonstrated that nesfatin-1/NUCB2 was expressed in the reproductive organs of mouse. However, no data exist on nesfatin-1/NUCB2 expression, regulation, and secretion in the uterus. Therefore, we examined the expression of nesfatin-1/NUCB2 in mouse uterus and the effects of PMSG and estrogen on its expression. NUCB2 mRNA expression in the uterus was determined by conventional and real-time PCR and nesfatin-1 protein expression was detected by western blotting. In immunohistochemistry staining, nesfatin-1 protein was localized at the epithelial cells of the uterine glands and endometrium. Nesfatin-1 protein binding sites were displayed at the epithelial cells of uterine glands and specific granulocytes including neutrophils. Additionally, to examine if the nesfatin-1/NUCB2 expression in the uterus is regulated by gonadotropin or estrogen, ovariectomized mice were treated with PMSG or $17{\beta}$-estradiol. The expression levels of NUCB2 mRNA in the uterus was significantly increased in the control mice after PMSG treatment, but not in the ovariectomized mice. In contrast, NUCB2 mRNA expression was dramatically increased in the ovariectomized mice after treatment with $17{\beta}$-estradiol. We report here for the first time that nesfatin-1/NUCB2 mRNA and protein express in the mouse uterus and its expression is regulated by estrogen secreted from the ovary, but not gonadotropin from the pituitary.

Expression of Nesfatin-1/NUCB2 and Its Binding Site in Mouse Ovary (생쥐 난소 내 Nesfatin-1/NUCB2 발현과 결합 부위 확인)

  • Kim, Jin-Hee;Youn, Mi-Ra;Bang, So-Young;Sim, Ji-Yeon;Kang, Hee-Rae;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.14 no.4
    • /
    • pp.287-295
    • /
    • 2010
  • It was recently reported that nesfatin-1/NUCB2, which is secreted from the brain, controls appetite and energy metabolism. The purpose of this research was to confirm whether or not the protein and its binding site should have been expressed in the mouse reproductive organs and to know the possible effects of nesfatin-1 on the reproductive function. Using the ICR female mouse ovary and uterus, the expression of NUCB2 mRNA was confirmed with the conventional PCR and the relative amount of NUCB2 mRNA in the tissues was analyzed with real-time PCR. Immunohistochemical staining was performed using the nesfatin-1 antibody to investigate the nesfatin-1 protein expression and the biotin conjugated nesfatin-1 to confirm the binding site for nesfatin-1 in the ovary. Furthermore, in order to examine if the expression of NUCB2 mRNA in the ovary and uterus is affected by gonadotropin, its mRNA expression was analyzed after PMSG administration into mice. As a result, the expression level of NUCB2 mRNA in the ovary and the uterus was as much as the expression level in hypothalamus. As a result of the immunohistochemical staining, nesfatin-1 proteins were localized at the theca cells, the interstitial cells, and some of the luteal cells. However, the granulosa cells in the follicles did not stain. Interestingly, the oocytes in the some follicles were stained with nesfatin-1. On the other hand, nesfatin-1 protein binding sites were displayed at the theca cells and the interstitial cells near the tunica albuginea. After PMSG administration the expression level of NUCB2 mRNA was increased in the ovary and the uterus. These results demonstrate that for the first time the nesfatin-1 and its binding site were expressed in the ovary and NUCB2 mRNA expression was controlled by gonadotropin, suggesting an important role in the reproductive organs as a local regulator. Therefore, further study is needed to elucidate the functions of nesfatin-1 on the reproductive organs.

AMP-activated Kinase Regulates Adipocyte Differentiation Process in 3T3-L1 Adipocytes Treated with Selenium (AMP-activated protein kinase가 셀레늄으로 처리된 3T3-L1 지방세포의 분화과정 억제에 관한 연구)

  • Park, Song-Yi;Hwang, Jin-Taek;Lee, Yun-Kyoung;Kim, Young-Min;Park, Ock-Jin
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.423-428
    • /
    • 2009
  • Selenium was investigated using human origin preadipocytes to see whether it possesses preventive or therapeutic effects for obesity. Unveiling the potential of selenium in the reduction of adipogenesis can help predict the therapeutic capabilities of selenium in obesity. In the present study, the molecular mechanism of the inhibition of adipogenesis by selenium was explored to unravel the involvement of the AMP-activated protein kinase. There is emerging evidence that AMPK, a sensor of cellular energy status, is a possible molecular target of controlling adipocyte differentiation on the basis of discovery that AMPK is responsible for the major metabolic responses to exercise, and integration of nutritional and hormonal signals to modulate feeding behavior or energy expenditure in the hypothalamus. Treatment of selenium resulted in inhibition of the adipocyte differentiation process and induction of mature apoptosis in 3T3-L1 adipocytes. We hypothesized that selenium may exert anti-adipogenic potential though modulating AMPK. We have found that selenium significantly activated AMPK and phosphorylated its substrate acetyl-CoA carboxylase ($ACC-serine^{79}$) during the inhibitory process of adipocytes. Also, the inhibition process of adipocyte differentiation by selenium was comparable to either reveratrol or a synthetic AMPK activator, AICAR (5-aminoimidazole-4-carboxamide-1-${\beta}$-D-ribofuranoside). To evaluate the involvement of AMPK in anti-lipogensis, we applied AICAR and Compound C, an AMPK inhibitor, to 3T3-L1-adipocytes and found that AMPK is required for the adipocyte differentiation blocking process. These results suggest that selenium has a potential to control adipogenesis and that this effect is mediated by AMPK, an essential kinase for both inhibition of adipocyte differentiation and apoptosis of mature adipocytes.