• Title/Summary/Keyword: 단면 최적 설계

Search Result 341, Processing Time 0.022 seconds

Optimization for Precast Prestressed Wide-U Beams with the Least Depth (최소깊이 프리캐스트 프리스트레스트 U형보의 최적화)

  • Yul Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.18-26
    • /
    • 2004
  • The cost of underground work is a dominant factor to determine the total construction fee. It is generally 2 ${\~}$ 2.5 times higher than that of above ground for building with the same height. 'A new precast prestressed framing plan for underground parking building' was suggested with the beam of the least depth - U-type beams. The depth of regular rectangular reinforced concrete beam which is currently used in the underground parking of apartments could be reduced up to 12 ${\~}$ 34cm/story due to the development of a U-beams from the optimum process. Two full scale prototype U-beams were tested in this study. It was found that the Wide U-beams in the test showed higher strength than calculated nominal and design, however need to provide temporary supports to meet the flexural moment of construction load at the simply supported state before the lopping concrete hardens.

Shape Optimization of Plane Truss Structures (평면(平面)트러스 구조물(構造物)의 형상최적화(形狀最適化))

  • Kim, Soung Wan;Lee, Gyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-15
    • /
    • 1986
  • The algorithm Proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Rahson method. In the second level, the geometric shape is optimized utilizing the unindirectional search technique of the Powell method which make it possible to minimize only the objective function. The algorithm Proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two-Levels algorithm Proposed in this study is safely applicable to any design criteria, and the convergency rate is relathely fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

Development of a Computational Electromagnetics Code for Radar Cross Section Calculations of Flying Vehicles (비행체 RCS 예측을 위한 CEM 기법 연구)

  • Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.4
    • /
    • pp.1-6
    • /
    • 2005
  • The ability to predict radar return from flying vehicles becomes a critical technology issue in the development of stealth configurations. Toward developing a CEM code based on Maxwell's equations for analysis of RCS reduction schemes, an explicit upwind scheme suitable for multidisciplinary design is presented. The DFFT algorithm is utilized to convert the time-domain field values to the frequency-domain. A Green's function based on near field-to-far field transformation is also employed to calculate the bistatic RCS. To verify the numerical calculation the two-dimensional field around a perfectly conducting cylinder is considered. Finally results are obtained for the scattering electromagnetic field around an airfoil in order to illustrate the feasibility of applying CFD based methods to CEM.

Ultimate Strength Analysis of Connections of Floating Pendulum Wave Energy Converter (부유식 진자형 파력발전장치의 연결부 최종강도해석)

  • Sohn, Jung Min;Cheon, Ho Jeong;Shin, Seung Ho;Hong, Key Yong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.1
    • /
    • pp.36-41
    • /
    • 2014
  • A floating offshore structure has high tendency to occur the buckling when compressive, bending and shear loads applied. When the buckling is occurred, in-plane stiffness of structure is remarkably decreased. And it has a harmful effect on the local structural strength as well as global structural strength. In the present study, it has been investigated the ultimate strength of tubular members which is located between a floater and a damping plate of the floating pendulum wave energy converter. Nonlinear finite element method is conducted using the initial imperfection according to 1st buckling mode which is obtained from the elastic buckling analysis. It is also noted the ultimate bending strength characteristic varying with a diameter, thickness and stiffeners of the tubular member.

Numerical Analysis of Load Reduction for Underground Arch Structures with Soft Zone Using Expanded PolyStyrene Geofoam (EPS Geofoam을 이용한 Soft Zone 적용방법에 따른 지중아치구조물의 하중저감에 관한 해석 연구)

  • Kim, Soo-Ha;Park, Jong-Sup;Kang, Jun-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.24-30
    • /
    • 2018
  • As the demand for underground space increases, many researchers have been studying the load reduction method using high compressible materials to solve for the stability problem of the overhead load and for the increase of the earth pressure which decreases the function of the underground structure. This paper determines the optimum soft zone and the effect of the using EPS Geofoam as a load reduction material to arch structures. A finite element analysis program, ABAQUS, is used to analyze the soil-structure interaction and the behavior of buried arch structures considering different four EPS Geofoam forms to confirm the most conservative shape. The optimum cross-sectional shape was determined by comparing the results of earth pressure reduction rate in accordance with the change of span-rise ratio and span length of the arch structure. It was confirmed that the earth pressure generated in the arch structure using the optimal soft zone selected by the numerical analysis was reduced by an average of 78%. In this study, the effect of EPS Geofoam on soil pressure reduction and its applicability to underground arch structures will provide an economical and conservative way to design underground structures and will help to increase the usability of deep underground space.

Numerical Analysis on the Estimation of Shock Loss for the Ventilation of Network-type Double-deck Road Tunnel (네트워크형 복층 도로터널 환기에서의 충격 손실 평가를 위한 수치해석적 연구)

  • Park, Sang Hoon;Roh, Jang Hoon;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.132-145
    • /
    • 2017
  • Shock loss was not applied for the tunnel ventilation of road tunnel in the past. However, pressure losses due to the shock loss can be significant in network double-deck road tunnel in which combining and separating road structures exist. For the optimum ventilation design of network double-deck road tunnel, this study conducted 3D CFD numerical analysis for the shock loss at the combining and separating flows. The CFD model was made with the real-scale model that was the standard section of double-deck road tunnel. The shock loss coefficient of various combining and separating angles and road width was obtained and compared to the existing design values. As a result of the comparison, the shock loss coefficient of the $30^{\circ}$ separating flow model was higher and that of the two-lane combining flow model was lower. Since the combining and separating angles and road width can be important for the design of shock loss estimation, it is considered that this study can provide the accurate design factors for the calculation of ventilation system capacity. In addition, this study conducted 3D CFD analysis in order to calculate the shock loss coefficient of both combining and separating flows at flared intersection, and the result was compared with the design values of ASHRAE. The model that was not widened at the intersection showed three times higher at the most, and the other model that was widened at the intersection resulted two times higher shock loss coefficients.

The Physical Property of the Structural Color Yarn and Fabric for Emotional Garment Using Biomimetic Technology (생체모방기술을 응용한 감성의류용 구조발색사와 직물의 물성)

  • Kim, Hyun-Ah;Kim, Seung-Jin
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.141-148
    • /
    • 2012
  • This study investigated the structural coloration and fabric hand of the caustic reduced fabrics for emotional garment using structural color yarns, which was spun by 37 alternating nylon and polyester layers capable of producing basic colors using biomimetic technology. The colorations of the three kinds of structural color yarns were confirmed using multi angle spectro-photometer, and their triangular cross sections composed with 37 alternating nylon and polyester layers were measured using SEM and were discussed with layer length in relation with coloration and spinning conditions were also set up. The apparent color difference and reflectance of the three kinds of fabrics with different density and weave pattern were analysed as ranging from 400nm to 700nm. The optimum fabric structural design which is made by warp and weft densities(194ends/in ${\times}$ 105picks/in) and caustic reduction condition by $100^{\circ}C$ temperature and 60minutes with NaOH, 20g/l solution were decided through analysis of the mechanical properties and fabric hands of these three kinds of fabrics treated with 3 kinds of the caustic reduction conditions. And it was shown that the rate of caustic reduction was increased from 13% to 23% with increasing temperature and time of caustic reduction. The extensibility, bending rigidity and shear modulus of caustic reduction treated fabrics were decreased by treatment of caustic reduction, on the other hand fabric compressibility was increased. And it was shown that the hand value of specimen number one which was treated with temperature $100^{\circ}C$ and time 60minute was the best and the hand of this fabric was better than that of Morpho $fabric^{(R)}$ made by Teijin co. Japan.

  • PDF

Flow characteristics analysis and test in the Pelton turbine for pico hydro power using surplus water (잉여 유출수를 이용한 소수력발전용 수차의 유동특성 해석 및 시험)

  • Jeong, Seon Yong;Lee, Kye Bock
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.325-331
    • /
    • 2016
  • Computational fluid numerical analysis using the commercial code CFX was performed to develop a Pelton turbine for a pico hydro power generator using the circulating water of a cooling tower in a large building. The performance of the Pelton turbine was examined for different design factors, such as the bucket shape, in which the Pelton wheel was connected in an appropriate manner to the pipe section, and the number of buckets in order to find the optimal design of Pelton turbine for a pico hydro power using surplus water. A benchmark test was carried out on the manufactured small scale Pelton turbine to validate the design method of the Pelton turbine by numerical analysis. The results obtained by comparing the flow characteristics and power output measured using the ultrasonic flowmeter, the pressure transducer and the oscilloscope with the numerical results confirmed the validity of the analytical design method. The possibility of developing Pelton turbines for kW class pico hydro power generators using surplus water with an average circulation velocity of 1.2 m/s for the chosen bucket shape and number of buckets in a 30 m high building was confirmed.

Optimum Design of Lock Snap-fit Using Design of Experiment (실험계획법을 이용한 이탈방지 스냅핏의 최적설계)

  • Son, In-Seo;Shin, Dong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.378-385
    • /
    • 2017
  • This study investigated the design of a snap fit, which is widely used for fastening plastic parts. We analyzed the assembly mechanism of a lock snapfit, measured the assembly force and separation force based on the design of experiments, and derived a regression equation through an analysis of variance. The response surface methodology was also used. Polybutylene terephthalate was used to fabricate specimens, and the assembly force and separation force were measured using a micro-tensile tester. The length, width, thickness, and interference were considered as factors. A second-order regression model was used to derive the regression equation. The assembly force decreased with increasing length and width, but it increased with increasing thickness and interference. The finite element method was used to analyze the assembly mechanics. The width decreased the assembly force by increasing the ductility. The influences of the factors for low assembly force and high release force were shown to be opposite to each other. It was necessary to design a structure that minimized the assembly force while maintaining an appropriate level of separation force.

Bed Design of Inducement Nets for Chrysanthemum Cultivation (국화재배용 유인네트의 베드 설계)

  • Suh, Won-Myung;Kim, Young-Ju;Bae, Yong-Han;Min, Young-Bong;Park, Joong-Choon;Huh, Moo-Ryong;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.43 no.2
    • /
    • pp.47-53
    • /
    • 2009
  • This research is intended to study the induction net of chrysanthemum used in its greenhouse and requiring lots of time for manual work and review the structural safety of a bed and existing greenhouses after designing the bed of a net which increases cropping period by sharply reducing the time of work and provides the bed of induction nets for cultivating chrysanthemum with its existing and new greenhouse. The review of sectional and biodynamic properties in 15 kinds of materials has revealed that the pipes of ${\phi}38.1{\times}1.7t$and ${\phi}38.1{\times}2.0t$ didn't exceed stress ratio but did 10mm drooping allowance. For this reason, the pipe of ${\phi}48.1{\times}1.5t$ net both stress ratio and drooping allowance. For the safety, the middle chamber should be designed into Truss type owing to bed load, wind load, and snow load when the bed of an induction net is installed in the middle chamber. When installing the middle chamber with a truss type, the greenhouse of chrysanthemum in Geochang area needs proper reinforcements because the stress in colullllls and wind proof walls exceeds stress allowance regardless of the installation of a bed.