• Title/Summary/Keyword: 단기 전력 수요 예측

Search Result 77, Processing Time 0.025 seconds

Dynamic model for on-line short-tern load forecasting (실시간 단기 부하예측을 위한 동적모험)

  • 박문희;조형기;정근모;최기련
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.387-393
    • /
    • 1995
  • 본 연구에서는 단기 전력수요예측에 있어서 필요한 데이터의 수와 계산시간을 경감하면서 보다 정확성을 기할 수 있는 앨고리즘의 개발을 위하여 이에 적합한 칼만필터링 앨고리즘을 고찰하였다. 또한 칼만필터 앨고리즘을 토대로 필터의 모형화를 통하여 단기 전력수요를 예측할 수 있는 실시간 동적예측 모형을 구축하고 그 적용 가능성을 시험하였다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측)

  • Park, Young-Jin;Choi, Jae-Gyun;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산)

  • Shim, Hyun-Jeong;Park, Lae-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • 박영진;황보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.283-287
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시접에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

온라인 단기 부하예측

  • 김사현;황갑주
    • 전기의세계
    • /
    • v.34 no.5
    • /
    • pp.272-280
    • /
    • 1985
  • 전력계통의 목표를 달성하기 위한 기본적인 요청은 시시각각으로 변동되는 전력부하를 확실하게 예측하는 일부터 시작된다. 그런데 전력부하는 온도, 습도, 광도 등 예측일의 기상요인은 물론 산업구조, 경기변동의 사회적인 요인에 의해 변화된다. 또한 온라인 예측시는 자동급전시스템의 여건이나 예측주기에 따라 각각 고려해야 할 사항이 다양하므로 정확도가 높으면서도 안정된 결정적인 예측기법을 찾기가 어렵다. 그러나 주어진 계통과 이용할 수 있는 여건을 바탕으로 했을때의 허용정도 및 자동화등 실제 적용면에서 보다 나은 예측기법은 생각될 수 있다. 필자들은 우리나라 계통을 대상으로 자동급전시스템(AGC/SCADA system)에 의해 온라인 리얼타임으로 취득해온 부하데이터를 이용하여 자유자재 (interactive)기능을 내포한 단기 부하예측 팩키지를 개발한 바 있으며 이에 소개하는 바이다.

  • PDF

Deep Neural Network Model For Short-term Electric Peak Load Forecasting (단기 전력 부하 첨두치 예측을 위한 심층 신경회로망 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.5
    • /
    • pp.1-6
    • /
    • 2018
  • In smart grid an accurate load forecasting is crucial in planning resources, which aids in improving its operation efficiency and reducing the dynamic uncertainties of energy systems. Research in this area has included the use of shallow neural networks and other machine learning techniques to solve this problem. Recent researches in the field of computer vision and speech recognition, have shown great promise for Deep Neural Networks (DNN). To improve the performance of daily electric peak load forecasting the paper presents a new deep neural network model which has the architecture of two multi-layer neural networks being serially connected. The proposed network model is progressively pre-learned layer by layer ahead of learning the whole network. For both one day and two day ahead peak load forecasting the proposed models are trained and tested using four years of hourly load data obtained from the Korea Power Exchange (KPX).

Weekdays Load forecasting of Domestic Power System Using Artificial Neural Network (인공신경회로망을 이용한 계통 주중 전력수요예측)

  • Jeon, Seung-Wook;Park, Woo-Jae;Park, Jung-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.610-611
    • /
    • 2011
  • 전력 계통의 운용 계획을 최적화하기 위해서 연간 최대전력수요와 시간별 전력수요에 대한 장단기간의 수요 예측에 관한 연구가 활발하게 진행 중이다. 특히, 단기 수요 예측은 발전비용과 신뢰도에 크게 영향을 주며, 전력계통의 제어 및 단기계획, 경제급전, 전력조류계산 등의 입력 자료로 활용된다. 많은 예측 문제에 폭넓게 사용되고 있는 인공신경회로망은 전력수요 예측에도 자주 쓰이는 기법이다. 본 논문에서는 이를 보다 정확히 하기 위해 기존의 인공신경회로망 기법을 개선하여 보다 정확한 예측을 보였다.

  • PDF

A scheme for short-term load forecast considering hourly load profile characteristics of weekdays and weekend (평일과 주말의 시간대별 부하특성을 고려한 단기 전력수요예측 기법)

  • Lim, Hyeong-Woo;Moon, Si-Woong;Park, Jeong-Do;Song, Kyung-Bin;Joo, Sung-Kwan;Shin, Ki-Jun;Cho, Bum-Seob;Cha, Dong-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.71-72
    • /
    • 2011
  • 단기 전력수요예측의 오차를 줄여 불필요한 전력생산을 이전에 방지하는 것은 매우 중요하다. 본 논문에서는 오차율이 높은 연휴 전 평일의 단기 전력수요예측 정확도를 높이기 위해 이전 평일과 주말의 데이터를 이용한 새로운 예측 방법을 제안하고, 추석연휴 전 평일에 제안한 방법을 적용하여 수요예측에 대한 오차가 개선됨을 확인하였다.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • Park, Yong-Jin;Wang, Bo-Hyeun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.5
    • /
    • pp.533-538
    • /
    • 2004
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The proposed system predicts the electrical loads with the lead times of 1 hour, 24 hour, and 168 hour. To do so, the load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. 96 initial structures are constructed for each prediction lead time. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized prediction modell. To improve the performance of the prediction system in terms of accuracy and reliability at the same time, the prediction model employs only two inputs. It makes possible to interpret the fuzzy rules to be learned. In order to demonstrate the viability of the proposed method, we develop a load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability

Design of short-term forecasting model of distributed generation power for wind power (풍력 발전을 위한 분산형 전원전력의 단기예측 모델 설계)

  • Song, Jae-Ju;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of Digital Convergence
    • /
    • v.12 no.3
    • /
    • pp.211-218
    • /
    • 2014
  • Recently, wind energy is expanding to combination of computing to forecast of wind power generation as well as intelligent of wind powerturbine. Wind power is rise and fall depending on weather conditions and difficult to predict the output for efficient power production. Wind power is need to reliably linked technology in order to efficient power generation. In this paper, distributed power generation forecasts to enhance the predicted and actual power generation in order to minimize the difference between the power of distributed power short-term prediction model is designed. The proposed model for prediction of short-term combining the physical models and statistical models were produced in a physical model of the predicted value predicted by the lattice points within the branch prediction to extract the value of a physical model by applying the estimated value of a statistical model for estimating power generation final gas phase produces a predicted value. Also, the proposed model in real-time National Weather Service forecast for medium-term and real-time observations used as input data to perform the short-term prediction models.