• Title/Summary/Keyword: 단극자

Search Result 26, Processing Time 0.023 seconds

3-D Inversion of 3-D Synthetic DC Resistivity Data for Vein-type Ore Deposits (국내 맥상광체조사를 위한 3차원 전기비저항 모델링자료의 3차원 역산 해석)

  • Lee, Ho-Yong;Jung, Hyun-Key;Jeong, Woo-Don;Kwak, Na-Eun;Lee, Hyo-Sun;Min, Dong-Joo
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.699-708
    • /
    • 2009
  • Recently as the interest in the development of domestic ore deposits has increased, we can easily find some studies on exploration geophysics-based ore-deposit survey in literature. Based on the fact that mineralized zone are generally more conductive than surrounding media, electrical resistivity survey among several geophysical surveys has been applied to investigate metallic ore deposits. Most of them are grounded on 2-D survey. However, 2-D inversion may lead to some misinterpretation for 3-D geological structures. In this study, we investigate the feasibility of the 3-D electrical resistivity survey to 3-D vein-type ore deposits. We first simulate 2-D dipole-dipole survey data for survey lines normal to the strike and 3-D pole-pole survey data, and then perform 3-D inversion. For 3-D ore-body structures, we assume a width-varying dyke, a wedge-shaped, and a fault model. The 3-D inversion results are compared to 2-D inversion results. By comparing 3-D inversion results for 2-D dipole-dipole survey data to 3-D inversion results for 3-D pole-pole survey data, we could note that the 2-D dipole-dipole survey data yield better inversion results than the 3-D pole-pole data, which is due to the main characteristic of the pole-pole array. From these results, we are convinced that if we have certain information on the direction of the strike, it would be desirable to apply 2-D dipole-diple survey for the survey lines normal to the strike. However, in most cases, we do not have any information on the direction of the strike, because we already developed the ore deposit with the outcrops and the remaining ore deposits are buried under the surface. In that case, performing 3-D pole-pole electrical resistivity survey would be a reasonable choice to obtain more accurate interpretation on ore body structure in spite of low resolution of pole-pole array.

The Crosshole Resistivity Method Using the Mixed Array (혼합배열을 사용하는 시추공간 전기비저항 탐사)

  • Cho In-Ky;Han Sung-Hoon;Kim Ki-Ju
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.250-256
    • /
    • 2002
  • Resistivity tomography has become an important tool to image underground resistivity distribution. This method has been widely applied to site investigation for engineering and environmental purpose. In resistivity tomography, various electrode arrays can be used and each array has both merits and demerits. For example, the pole-pole array has high signal to noise ratio (S/N ratio), but its resolution is too low. The dipole-dipole array has low S/N ratio, but its resolution is very high. The Pole-dipole may has intermediate Snf ratio and resolution. The modified Pole-dipole array, recently proposed, shows reasonable S/N ratio and resolution, which are comparable to the pole-dipole array. These electrode arrays except the pole-pole array, however, have the problem that the apparent resistivity can diverge at some special electrode Positions. Also, the Pole-Pole array may not reflect the doe resistivity of an anomalous body. In this study, we propose a new electrode array, mixed array, where pole-dipole and modified pole-dipole ways are selectively used with the relative positions of current and potential electrodes. The mixed array has the same level of S/N ratio and resolution as the pole-dipole array and the apparent resistivity does not diverge in the receiver hole. Furthermore, the apparent resistivity using the array can reflect the true resistivity of the anomalous body.

A Study on the Modified Electrode Arrays in Two-Dimensional Resistivity Survey (2차원 전기비저항 탐사를 위한 변형된 전극배열법에 관한 연구)

  • Kim Jung-Ho;Yi Myeong-Jong;Song Yoonho;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.59-69
    • /
    • 2001
  • Five kinds of modified electrode arrays were proposed to overcome the weak points of the commonly used arrays using dipole and/or pole in two-dimensional resistivity surveys. The modified pole-pole array was suggested to overcome the inefficiency caused by distant earthing in pole-pole array. Four kinds of modified arrays using dipole were designed to enhance the signal-to-noise ratio of the conventional dipole-dipole and pole-dipole arrays through boosting up the measured potential difference. In the numerical experiments using the two-dimensional modeling and inversion, the effects of the ambient electrical noise and the resolving power were examined and the results showed the validity of the modified arrays proposed in this study.

  • PDF

Effects on Logging-While-Drilling (LWD) data of mismatch between multipole sources (다극자 송신원들 사이의 불일치가 LWD 자료에 미치는 영향)

  • Byun, Joong-Moo;Joo, Yong-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.143-153
    • /
    • 2009
  • Using a discrete wavenumber method, we examine the effects on Logging-While-Drilling (LWD) logs when a mismatch exists between the amplitudes or generating times of the signals from individual monopoles in a LWD multipole source. An amplitude-mismatched LWD dipole/quadrupole source produces non-dipole/non-quadrupole modes as well as flexural and screw modes. The strongest of non-dipole/non-quadrupole modes is the Stoneley mode, whose amplitude increases with increasing mismatch. However, we can recover the flexural mode signals by A-C processing, and the screw mode by A-B+C-D processing, respectively. The Stoneley mode, which has the same amplitude at the same radial distance from the borehole axis, is cancelled out by A-C and A-B+C-D processing as long as the tool is placed at the centre of the borehole. The responses from a time-mismatched LWD multipole source look like the summation of responses by two or four monopole sources off the borehole axis. However, we can avoid the misinterpretation of the formation velocities by referring to the computed dispersion curves, which are independent of the arrival times of the modes, on the frequency semblance plot.

Characteristics of Low Frequency Aero-acoustic Noise Radiation for a Wind Turbine Generator of NREL Phase VI (NREL Phase VI 풍력발전기 저주파 소음방사 특성)

  • Mo, Jang-Oh;Kim, Byoung-Yun;Ryu, Byeng-Nam;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.504-507
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Calculated aerodynamic performances such as shaft torque and power are compared with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. If the distance by two times is changed from 32D to 64D toward the downstream region, sound pressure level is reduced by about 6.4dB.

  • PDF

Behavior of Normalized Voltage Curves in the Resistivity Method (전기비저항 탐사에서 전위감쇠곡선의 거동특성)

  • Cho, In-Ky;Lee, Keun-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.364-369
    • /
    • 2010
  • Resistivity data should be edited before the inversion because resistivity data are contaminated by a lot of noise. Generally, outlier or data violating pants-leg effect in dipole-dipole array were used to be rejected in the apparent resistivity pseudo-section. For more precise data editing, normalized voltage curves are used. In this study, we analyzed the behavior of normalized voltage curves for pole-pole, pole-dipole and dipole-dipole arrays in the presence of threedimensional inhomogeneities, and finally re-examined the validity of normalized voltage curves in the editing process of resistivity data.

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface 변화에 따른 송풍기 소음의 BEM 해석)

  • 박용민;이승배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.772-777
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surfaces on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Numerical Study on Cavitation Flow and Noise in the Flow Around a Clark-Y Hydrofoil (Clark-Y 수중익형 주변 공동 현상에 의한 유동장과 소음 예측에 대한 수치적 연구)

  • Ku, Garam;Cheong, Cheolung;Kim, Sanghyeon;Ha, Cong-Tu;Park, Warn-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.87-94
    • /
    • 2017
  • Because the cavitation flow driven by an underwater propeller corrodes the materials around it and generates a high level of noise, it has become an important topic in engineering research. In this study, computational fluid dynamics techniques are applied to simulate cavitation flow, and the noise in the flow is predicted by applying the acoustic analogy to the predicted flow. The predicted results are compared with measurement results and other predictions in terms of surface pressure distribution and the temporal variation in liquid volume fraction. The predicted results are found to be in good agreement with the measured results. The source of the noise attributed to the time rate of change in the liquid volume fraction around the hydrofoil is modeled as a monopole source, and the source of the noise due to unsteady pressure perturbations on the hydrofoil surface is modeled as a dipole source. Then the predicted noise results are analyzed in terms of directivity and SPL spectrum. The noise caused by unsteady pressure perturbations was dominant in the entire frequency range considered in the study.

A Numerical Study on Analysis of Low Frequency Aero-acoustic Noise for a HAWT of NREL Phase VI (NREL Phase VI 수평축 풍력터빈의 저주파 공력소음 해석에 관한 수치적 연구)

  • Mo, Jang-Oh;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.8
    • /
    • pp.1170-1179
    • /
    • 2009
  • The purpose of this work is to predict the low frequency aero-acoustic noise generated from the horizontal axis wind turbine, NREL Phase VI for the whole operating conditions of various wind speeds using large eddy simulation and Ffowcs-Williams and Hawkings model provided in the commercial code, FLUENT. Because there is no experimental data about wind turbine noise, we first of all compared aerodynamic performance such as shaft torque and power with experimentally measured value. Performance results show a good agreement with experimental data within about 0.8%. As the wind speed increases, the overall sound pressure level and the sound pressure level by the quadrupole and dipole source show a increasing tendency. Also, sound pressure level is proportional to $r^{-2}$ in the near field and $r^{-1}$ in the far field according to the increase of distance from the center of hub of wind turbine. According to 2 times increase of distance, sound pressure level is reduced by about 6dB.