• Title/Summary/Keyword: 단권변압기(AT)

Search Result 8, Processing Time 0.026 seconds

Investigation of Autotransformer Configuration to Enhance Collecting Voltage in Train (집전 전압 향상을 위한 교류급전시스템의 단권변압기 구성 검토)

  • Kim, Joo-Rak;Kim, Jung-Hoon
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • AC traction power supply system has adopted autotransformer (AT) feeding method. This system has an advantage as long feeding distance. However, the countermeasure for voltage drop should be considered, because load capacity grows larger and headway grows shorter in recent electric railway system. This paper proposes the improved system configuration to enhance voltage drop in ac railway system without additional power electronic device. That is to increase turn ratio between contact wire and rail of AT. By modifying turn ratio of AT at SSP or SP, collecting voltage on train will be enhanced.

CMOS Power Amplifier Using Mode Changeable Autotransformer (모드변환 가능한 단권변압기를 이용한 CMOS 전력증폭기)

  • Ryu, Hyunsik;Nam, Ilku;Lee, Dong-Ho;Lee, Ockgoo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.4
    • /
    • pp.59-65
    • /
    • 2014
  • In this paper, in order to improve efficiency performance of power amplifiers, a mode changeable autotransformer is proposed. Efficiency performance at the low-power mode can be improved by adopting the mode changeable autotransformer. A dual-mode autotransfomrer CMOS power amplifier using a standard 0.18-${\mu}m$ CMOS process is designed in this work. Number of turns in a primary winding is re-configurated according to mode change between the high-power mode and the low-power mode. Thus, the efficiency performance of the power amplifier at each mode is optimized. EM and total circuit simulation results verify that low-power mode power added efficiency(PAE) at 24dBm output power is improved from 10.4% to 26.1% using the proposed multi-mode operation.

Analysis for Catenary Voltage of The ATs-Fed AC Electric Railroad System (단권변압기 교류전기철도 급전시스템의 전차선 전압해석)

  • 정현수;이승혁;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.493-499
    • /
    • 2003
  • This paper presents exact Autotransformers(ATs)-fed AC electric Railroad system modeling using constant current mode for locomotives. An AC electric railroad system is rapidly changing single-phase load, and at a feeding substation, 3-phase electric power is transferred to paired directional single-phase electric power. As the train moves along a section of line between two adjacent ATs. The proposed AC electric railroad system modeling method considers the line self-impedances and mutual-impedances. The constant current mode model objectives are to calculate the catenary and rail voltages with the loop equation. When there are more than one train in the AC electric railroad system, the principle of superposition applies and the only difference between the system analyses for one train. Filially, this paper shows the general equation of an AC electric railroad system, and that equation has no relation with trains number, trains position, and feeding distance.

Location of Auto Transformer in AC AT Feeding System (교류 AT 급전계통에서의 단권변압기 설치위치의 최적화)

  • Han, M.S.;Lee, J.M.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1248-1250
    • /
    • 2002
  • AC AT feeding system is possible to do the long distance feeding due to compensate the voltage drop. Nowaday this is a typical and efficient type all over the world in high speed train and heavy transport capacity. Normally a Auto-transformer is installed at regular internal (5 to 10km) between Substation and Sectioning post, this study is reviewed the voltage drop according to train movement and the optimal location of auto transformer, and provided the efficient feeding configuration.

  • PDF

Evaluation of the variable TAB Autotransformer for ascending collecting Voltage (집전전압 향상을 위한 가변탭 단권변압기 검토)

  • Lee, Chang-Mu;Han, Moon-Seub;Lee, Han-Min
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1426-1430
    • /
    • 2009
  • AC AT feeding method consists return circuits of electric train inserting in parallel between trolly line and feeding line and connecting neutral line to rail and FPW. Due to increasing electric load at feeding system, collecting voltage of train and end voltage are going down. So to increase voltage between trolly line and rail, the usefulness of new autotransformer are considered which variation of short impedance and change of line voltage is simulated with modified winding ratio of autotransformer from 1:1 to variable tab.

  • PDF

A Theoretical Study on Voltage Drop of Auto-Transformer for Railway Vehicle Base (철도차량기지용 단권변압기의 전압강하에 대한 이론적 고찰)

  • Yu, Ki-Seong;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1723-1728
    • /
    • 2018
  • In order to investigate the voltage drop compensation effect of AT for domestic railway vehicle base, the parameters of AT voltage drop of railroad car base are Z3 (Impedance of feeder line), Xn ( Distance from railroad vehicle to AT to SS), and Dn (distance between both ATs of railway vehicle).In addition, when installed in a SSP for a railway vehicle base, there is no AT and feeder line in the railway vehicle base except for the SSP for the main line and the SSP for the railway vehicle base, so that if zero or ignored, the AC single-phase two- It can be confirmed that it becomes a form.

Parametric Study for Variable Tap of Autotransformer Neutral in AC Feeding (전기철도 단권변압기 중성점 탭절환 특성연구)

  • Han, Moonseob;Lee, Chang-Mu;Kim, Jae-Won;Chang, Sang-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.137-141
    • /
    • 2018
  • The voltage drop is important in electric railway for feeding a huge power of train on fixed feeding area. Nowadays it is tried to operate a high speed trains on conventional lines and there is problem on the voltage drop too. It is simulated on the conditions increased the turn ratio of trolley, installed autotransformer neutral line with variable taps. In result, it is compensated the voltage drop between ATs and better on last AT, not on the position of AT. And it is decreased a return current and neutral current of AT because of unbalance between trolley and feeder. It should be studied faster and more controllable the solid state switchs instead of the mechanical one in order to utilize this system.

New Multi-pulse Rectifier Systems Using An Open-Delta Auto-Connected Transformer (개방-델타 단권선 변압기를 이용한 새로운 다중 펄스 정류기 시스템)

  • Gang, Mun-Sik;U, Byeong-Ok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.5
    • /
    • pp.278-285
    • /
    • 1999
  • This paper proposes new 12 and 24-pulse rectifier systems using an open-delta auto-connected transformer. This approach employs two static converters to operate it at higher than utility line frequencies and to provide multi-pulse operation. By operating magnetic components at a higher frequency, higher power density can be achieved. A unique feature of the proposed approach is that the magnetic components for the dc-side are also exposed to a higher frequency and these components too are reduced in size. The switching frequency and its harmonic components are absent in the utility input line current. The VA ratings of the transformer and static converter are 0.236/0.292 [pu] and 0.11/0.18 [pu] in 12 and 24-pulse rectifier system, respectively. A finer grade of steel or alternatives can be deployed to increase performance and reduce size further. Analysis, simulations, simulations, design example, and experimental results for a 480[V], 10{kVA] prototype system are presented.

  • PDF