• Title/Summary/Keyword: 단국대학교

검색결과 1,779건 처리시간 0.027초

드론 및 비전 프로세싱 기술을 활용한 디지털 건설현장 관리에 대한 연구 (Research on Digital Construction Site Management Using Drone and Vision Processing Technology)

  • 서민조;박경규;이승빈;김시욱;최원준;김치경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.239-240
    • /
    • 2023
  • Construction site management involves overseeing tasks from the construction phase to the maintenance stage, and digitalization of construction sites is necessary for digital construction site management. In this study, we aim to conduct research on object recognition at construction sites using drones. Images of construction sites captured by drones are reconstructed into BIM (Building Information Modeling) models, and objects are recognized after partially rendering the models using artificial intelligence. For the photorealistic rendering of the BIM models, both traditional filtering techniques and the generative adversarial network (GAN) model were used, while the YOLO (You Only Look Once) model was employed for object recognition. This study is expected to provide insights into the research direction of digital construction site management and help assess the potential and future value of introducing artificial intelligence in the construction industry.

  • PDF

SIFT와 SURF의 성능 비교 (A Comparison of performance between SIFT and SURF)

  • 이용환;박성현;신인경;안효창;조한진;이준환;이상범
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.1560-1562
    • /
    • 2013
  • 정확하고 강인한 영상 등록(Registration)은 영상 검색과 컴퓨터 비전과 같은 여러 응용 분야에서 성능을 좌우하는 매우 중요한 역할을 담당하며, 특징 추출 및 매칭 단계를 통해 수행된다. 영상의 특징을 관심 점으로 지정하여 추출하는 대표적인 알고리즘으로, SIFT (Scale Invariant Feature Transform)와 SURF (Speeded Up Robust Feature)가 있다. 본 논문에서는 2 개의 특징점 추출 알고리즘을 구현하고 예제 데이터를 기반으로 실험을 통해 성능적 비교 분석을 수행한다. 실험 결과, SURF 알고리즘이 특징 추출 및 매칭, 처리시간 측면에서 SIFT 보다 효율적인 성능을 보였다.