• Title/Summary/Keyword: 단결정 성장

Search Result 755, Processing Time 0.026 seconds

Development and Testing of CdZnTe Detector for Pocket Surveymeter (CdZnTe 검출기를 이용한 개인용 Pocket Surveymeter의 제작 및 특성)

  • Lee, Hong-Kyu;Kang, Young-Il;Choi, Myung-Jin;Wang, Jin-Suk;Kim, Byung-Taik
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 1996
  • In this paper, we discussed the fabrication and characterization of bulk type CdZnTe detector for pocket surveymeter. The resistivity of CdZnTe single crystal grown by the High Pressure Bridgman method is in the mid of $10^9$ ohm-cm. The detector structure is Au/CdZnTe/Au and gold electrode is formed by electroless deposition method. Resolutions of 4.8keV and 2.2keV were observed at 22.2keV line of $^{109}Cd$ and 59.6keV line of $^{241}Am$ at room temperature, respectively. We also constructed the small size pocket surveymeter using home made CdZnTe detector. It shows the good linearity over a range from 1mR/hr to 10R/hr with deviation less than 5%. The sensitivity of the surveymeter developed is $2.2{\times}10^3 cps/Rad\;hr^{-1}$ for the 662keV of $^{l37}Cs\;{\gamma}-ray$.

  • PDF

Photocurrent Study on the Splitting of the Valence Band and Growth of CuAlSe2 Single Crystal Thin Film by Hot Wall Epitaxy (Hot Wall Epitaxy(HWE)법에 의한 CuAlSe2 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구)

  • Park, Chang-Sun;Hong, Kwang-Joon;Park, Jin-Sun;Lee, Bong-Ju;Jeong, Jun-Woo;Bang, Jin-Ju;Kim, Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.157-167
    • /
    • 2004
  • A stoichiometric mixture of evaporating materials for $CuAlSe_{2}$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $CuAlSe_{2}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $680^{\circ}C$ and $410^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuAlSe_{2}$ single crystal thin films measured with Hall effect by van der Pauw method are $9.24{\times}10^{16}cm^{-3}$ and $295cm^{2}/V{\codt}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_{2}$ obtained from the absorption spectra was well described by the Varshni's relation, $E_{g}(T)$ = 2.8382 eV - ($8.68{\circ}10^{-4}$ eV/K)$T^{2}$/(T + 155 K). The crystal field and the spin-orbit splitting energies for the valence band of the $CuAlSe_{2}$ have been estimated to be 0.2026 eV and 0.2165 eV at 10 K, respectively, by means of the photocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}so$ definitely exists in the ${\Gamma}_{5}$ states of the valence band of the $CuAlSe_{2}$. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1-}$, $B_{1-}$, and $C_{1-}$ exciton peaks for n = 1.

Effect of Thermal Annealing for MgGa2Se4 Single Crystal Thin Film Grown by Hot Wall Epitaxy (뜨거운 곁쌓기 법에 의해 성장된 MgGa2Se4 단결정 박막의 열처리 효과)

  • Bang, Jinju;Kim, Hyejeong;Park, Hwangseuk;Kang, Jongwuk;Hong, Kwangjoon
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.51-57
    • /
    • 2014
  • The evaporating materials for $MgGa_2Se_4$ single crystal thin films was prepared from horizontal electric furnace. To obtain the single crystal thin films, $MgGa_2Se_4$ compounded polycrystal powder was deposited on thoroughly etched semi-insulated GaAs(100) substrate by the hot wall epitaxy (HWE) method system. The source and substrate temperatures of optimized growth conditions, were $610^{\circ}C$ and $400^{\circ}C$, respectively.The source and substrate temperatures were $610^{\circ}C$ and $400^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by double crystal X-ray diffraction (DCXD). The temperature dependence of the energy band gap of the $MgGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=2.34\;eV-(8.81{\times}10^{-4}\;eV/K)T^2/(T+251\;K)$. After the as-grown $MgGa_2Se_4$ single crystal thin films was annealed in Mg-, Se-, and Ga-atmospheres, the origin of point defects of $MgGa_2Se_4$ single crystal thin films has been investigated by the photoluminescence (PL) at 10 K. The native defects of $V_{Mg}$, $V_{Se}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Se-atmosphere converted $MgGa_2Se_4$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $MgGa_2Se_4$/GaAs did not form the native defects because Ga in $MgGa_2Se_4$ single crystal thin films existed in the form of stable bonds.

Growth and photoluminescience propeties for $CuInSe_2$ single crystal thin film by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)법에 의한 $CuInSe_2$ 단결정 박막 성장과 점결함)

  • Hong, Kwang-Joon;Lee, Sang-Youl;Kim, Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.111-112
    • /
    • 2005
  • To obtain the single crystal thin films, $CuInSe_2$, mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wail epitaxy (HWE) system. The source and substrate temperatures were 620$^{\circ}C$ and 410$^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobilily of $CuInSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $9.62\times10^{16}$ $cm^{-3}$ and $296cm^2/V{\cdot}s$ at 293 K, respectively. The temperature dependence of the energy band gap of the CulnSe$_2$ obtained from the absorption spectra was well described by the Varshni's relation E$_g$(T) = 1.1851 eV - ($8.99\times10^{-4}$ ev/K)T$_2$/(T + 153K). After the as-grown $CuInSe_2$ single crystal thin films was annealed in Cu-, Se-, and In-atmospheres the origin of point defects of $CuInSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The nat ive defects of V$_{Cu}$, $V_{Se}$, Cu$_{int}$, and $Se_{int}$ obtained by PL measurements were classified as a donors or accepters type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuInSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that In in $CuInSe_2$/GaAs did not form the native defects because In in $CuInSe_2$ single crystal thin films existed in the form of stable bonds.

  • PDF

A study on the oxide semiconductor $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, solar cells fabricated by two source evaporation (이가열원(二加熱源) 증착법(蒸着法)에 이한 산화물(酸化物) 반도체(半導體) $[(I_{n2}O_3)_x{\cdot}(S_nO_2)_{1-x}]_{(n)}/Silicon(p)$, 태양전지(太陽電池)에 관한 연구(硏究))

  • Jhoon, Choon-Saing;Kim, Yong-Woon;Lim, Eung-Choon
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.62-78
    • /
    • 1992
  • The solar cells of $ITO_{(n)}/Si_{(p)}$, which are ITO thin films deposited and heated on Si wafer 190[$^{\circ}C$], were fabricated by two source vaccum deposition method, and their electrical properties were investigated. Its maximum output is obtained when the com- position of the thin film consist of indium oxide 91[mole %] and thin oxide 9[mole %]. The cell characteristics can be improved by annealing but are deteriorated at temperature above 600[$^{\circ}C$] for longer than 15[min]. Also, we investigated the spectral response with short circuit current of the cells and found that the increasing of the annealing caused the peak shifted to the long wavelength region. And by experiment of the X-ray diffraction, it is shown to grow the grains of the thin film with increasment of annealing temperature. The test results from the $ITO_{(n)}/Si_{(p)}$ solar cell are as follows. short circuit current : Isc= 31 $[mW/cm^2]$ open circuit voltage : Voc= 460[mV] fill factor : FF=0.71 conversion efficiency : ${\eta}$=11[%]. under the solar energy illumination of $100[mW/cm^2]$.

  • PDF

Growth and Photocurrent Properties of $CuGaSe_2$ Single Crystal ($CuGaSe_2$ 단결정 박막 성장과 광전류 특성)

  • K.J. Hong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.81-81
    • /
    • 2003
  • The stochiometric mixture of evaporating materials for the CuGaSe$_2$ single crystal thin films were prepared from horizontal furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal CuGaSe$_2$, it was found tetragonal structure whose lattice constant no and co were 5.615$\AA$ and 11.025$\AA$, respectively. To obtains the single crystal thin films, CuGaSe$_2$ mixed crystal was deposited on throughly etched GaAs(100) by the Hot Wall Epitaxy(HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$ respectively, and the growth rate of the single crystal thin films was about 0.5${\mu}{\textrm}{m}$/h. The crystalline structure of single crystal thin films was investigated by the double crystal X-ray diffraction(DCXD). Hall effect on this sample was measured by the method of van der pauw and studied on carrier density and mobility depending on temperature. From Hall data, the mobility was likely to be decreased by pizoelectric scattering in the temperature range 30K to 150K and by polar optical scattering in the temperature range 150K to 293K. The optical energy gaps were found to be 1.68eV for CuGaSe$_2$ single crystal thin films at room temperature. The temperature dependence of the photocurrent peak energy is well explained by the Varshni equation then the constants in the Varshni equation are given by a=9.615$\times$ 10$^{-4}$ eV/K, and $\beta$=335K. From the photocurrent spectra by illumination of polarized light of the CuGaSe$_2$ single crystal thin films. We have found that values of spin orbit coupling ΔSo and crystal field splitting ΔCr was 0.0900eV and 0.2498eV, respectively. From the PL spectra at 20K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0626eV and the dissipation energy of the acceptor-bound exciton and donor-bound exciton to be 0.0352eV, 0.0932eV, respectively.

  • PDF

Development of a new lifetime prediction method for gas turbine core parts by digital image analysis of precipitates morphology (석출물 형상의 디지털 이미지 분석에 의한 가스터빈 핵심부품의 새로운 수명평가기술 개발)

  • Chang, Moon Soo;An, Seong Uk
    • Analytical Science and Technology
    • /
    • v.21 no.2
    • /
    • pp.148-157
    • /
    • 2008
  • To describe the lifetime prediction of gas turbine core parts serviced in some ten thousands rpms at over $1,000^{\circ}C$, the Larson-Miller Creep Curves, which are formed by creep rupture tests as the destructive experiment with parameters of stress and temperature, are used often, but not exact and reliable with errors of over some tens. On the other hand, this study shows a non-destructive method with increased accuracy and reliability. The SEM and TEM specimens were extracted by replica after polishing the local airfoil and root surfaces of the first stage scraped blade (bucket), serviced for 18,000 hours at $1,280^{\circ}C$ in Gas Turbines of Boryong. The observed TEM and SEM precipitates were digitalized for calculation of the average size. Here we could find the precipitate size grown from $0.45{\mu}m$ to $0.6{\mu}m$ during service and the grown precipitates to be still sound. From these results we could conclude that the scraped balde can be used for ten thous and hours additionally and for twenty thousand hours by additional heat treatments on the scraped blade.

Wet chemical etching of molten KOH/NaOH eutectic alloy to evaluate AlN single crystal (AlN 단결정의 품질평가를 위한 molten KOH/NaOH eutectic alloy의 화학적 습식에칭)

  • Park, Cheol Woo;Park, Jae Hwa;Hong, Yoon Pyo;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.237-241
    • /
    • 2014
  • We investigated the optimal etching conditions and properties of the surface change due to molten KOH/NaOH chemical wet etching using an AlN wafer which has been put to practical use in the present study. Results were observed using a scanning electron microscope after 5 minutes etching at $350^{\circ}C$, was found to have a surface form of the respective other Al-face, the N-face. In particular, etch-pit in the form of a hexagon, which is observed in the Al-face appeared, It was calculated at $2{\times}10^6/cm^2{\sim}10^{10}/cm^2$ dislocation density. In the case of N-face, lattice defects in the form of the hexagonal pyramids is formed. It was discovered that in order to observe the orientation of the wafer, which corresponds to the C-axis direction of the resulting hexagonal AlN which was analyzed using XRD (0002) and is a state of being oriented in the (0004) plane. The Radius of curvature of AlN wafer was 1.6~17 m measured by DC-XRD rocking curve position.

The Fabrication of the Single Crystal Wire from Cu Single Crystal Grown by the Czochralski Method and its Physical Properties (Czochralski법을 이용한 금속 단결정의 성장과 구조적, 전기적 성질에 관한 연구)

  • Park, Jeung-Hun;Cha, Su-Young;Park, Sang-Eon;Kim, Sung-Kyu;Cho, Chae-Ryong;Park, Hyuk-K.;Kim, Hyung-Chan;Jeong, Myung-Hwa;Jeong, Se-Young
    • Korean Journal of Crystallography
    • /
    • v.16 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • It is well known that the general metals have a lot of grain boundaries. The grain boundaries play a negative role to increase the resistivity and to decrease the conductivity. The small resistivity and the large conductivity have been a goal of the material scientists, and no signal noise, perfect signal transfer, and the realization of the real sound are the dream of electronic engineers and audio manias. Generally, oxygen free copper (OFC) and Ohno continuous casting (OCC) copper cables have been used for the purpose of the precise signal transfer and low noise. However they still include a lot of grain boundaries. In our study, we have grown the single crystal by the Czochralski method and succeeded to produce single crystal wires from the crystal in the dimension of $0.5{\times}0.5{\times}2500mm$. The produced wire still possesses very good single crystal properties. We observed the structure of the wire, and measured the resistance and impedance. Glow Discharge Spectrometer (GDS) was used for analyzing the compositions of copper single crystals and commercial copper. Current-Voltage curve, resistance, total harmonic distortion and speaker frequency response were measured for comparing electrical and acoustic properties of two samples.

Effects of Substrate Temperature on the Morphology of Diamond Thin Films Deposited by Hot Filament CVD (Hot Filament CVD에 의해서 증착된 다이아몬드 박막의 표면형상에 미치는 기판온도의 영향)

  • 형준호;조해석
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.14-26
    • /
    • 1995
  • The growth mechanism of diamond thin films, deposited by Hot Filament CVD, was investigated through observation of changes in their surface morphology as a function of the substance temperature and deposition time. Amorphous carbon or DLC thin films were deposited at low substrate temperature. Diamond films consisting of square-shaped particles, whose surfaces are (100) planes, were deposited at an intermedate temperature. At high substrate temperatures, diamond films consisting of the particles showing both (100) and (111) plane were deposited. The (100) proferred orientation of the diamond films are believed to be due to a relatively high supersaturation during deposition, and the growth condition for the diamond films having (100) preferred orientation can be applied to the single crystal growth since no twins are generated on the (100) plane. The grain size of the diamond films did not change with increasing temperature and its increasing rate with increasing deposition time was the same irrespective of the substrate temperature. However, the nucleation density increased with substrate temperature and its increasing rate with deposition time was much higher for the films deposited at higher substrate temperature.

  • PDF