• Title/Summary/Keyword: 다 개체 로봇

Search Result 42, Processing Time 0.016 seconds

Environment Monitoring Algorithm using Behavior-Based Multiple Robot System (행동기반 다개체 로봇 시스템을 이용한 환경감시 알고리즘)

  • Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.622-628
    • /
    • 2012
  • This paper proposes an environment monitoring algorithm using a behavior-based multiple robot system. This paper handles an escort and a boundary-tracking especially. Unlike previous research works, the proposed environment monitoring system which is based on the behavior-based multiple robot control allows the system to employ the reusable code and general algorithm. Also, the proposed method can be applied to cheaper process with low performances. In the proposed method, escort and boundary-tracking missions are constructed by weighted sum of predefined basic behaviors after redefining the basic behaviors in previous works and introducing the novel basic behavior. Simulation results of the proposed method are included to demonstrate the practical application of the proposed algorithm.

Crossing Dynamics of Leader-guided Two Flocks (우두머리가 있는 두 생물무리의 가로지르기 동역학)

  • Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2010
  • In field, one can observe without difficulties that two flocks are intersected or combined with each other. For example, a fish flock in a stream separates into two part by obstacles (e.g. stone) and rejoins behind the obstacles. The dynamics of two flocks guided by their leader were studied in the situation where the flocks cross each other with a crossing angle, ${\theta}$, between their moving directions. Each leader is unaffected by its flock members whereas each member is influenced by its leader and other members. To understand the dynamics, I investigated the order parameter, ${\phi}$, defined by the absolute value of the average unit velocity of the flocks' members. When the two flocks were encountered, the first peak in ${\phi}$ was appeared due to the breaking of the flocks' momentum balance. When the flocks began to separate, the second peak in ${\phi}$ was observed. Subsequently, erratic peaks were emerged by some individuals that were delayed to rejoin their flock. The amplitude of the two peaks, $d_1$ (first) and $d_2$ (second), were measured. Interestingly, they exhibited a synchronized behavior for different ${\theta}$. This simulation model can be a useful tool to explore animal behavior and to develop multi-agent robot systems.