• Title/Summary/Keyword: 다항 회귀

Search Result 190, Processing Time 0.024 seconds

Identification of Contaminated pixels in 10-day NDVI Image (정규식생지수(NDVI) 산출시 발생하는 노이즈 제거에 관한 연구)

  • Yeom Jong-Min;Han Kyung-Soo;Kim Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.113-116
    • /
    • 2006
  • 지표 변수는 지면 근처의 기후변화 및 상태를 파악하는데 중요한 역할을 하기 때문에, 충분히 높은 정확성을 가진 값이 산출되어야 한다. 하지만 이러한 지표 변수는 구름과 눈, 그리고 강수등에 의해서 그 값이 변화하게 된다. 이러한 오차 값을 줄이기 위해 구름제거, 지리보정, 대기보정 등의 위성 전처리 과정이 수행되었다. 하지만 위성 전처리 과정을 수행한 이후에도 정규식생지수 시계열 자료에는 여전히 노이즈가 남아 있기 때문에 이전에 연구에서는 이동 평균등과 같은 다양한 방법으로 노이즈를 제거하고자 하였다. 하지만 이동평균 방법은 참값에 가까운 최고값도 제거하기 때문에 문제점을 가지고 있다. 본 연구에서는 다중 다항회귀식을 이용하여 정규식생지수 시계열 자료 산출시 발생하는 노이즈를 제거 하였다.

  • PDF

Load Forecasting for the Holidays Using a Data mining with the Coefficient of Determination (결정계수 기반의 데이터 마이닝을 이용한 특수일 최대 전력 수요 예측)

  • Wi, Young-Min;Song, Kyung-Bin;Joo, Sung-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.552-553
    • /
    • 2008
  • 본 논문에서는 특수일 전력 수요 예측을 위한 알고리즘을 제시하였다. 논문에서 제안하는 전력 수요 예측 알고리즘은 데이터 마이닝을 이용한 데이터 전처리 부분과 전처리된 데이터를 사용하여 특수일 수요를 예측하는 다항 회귀분석 부분으로 나누어진다. 데이터 전처리에서는 전력 수요 예측을 위한 과거 데이터 중에 과거 특수일 수요의 패턴을 잘 보여주는 데이터를 찾기 위해 온도와 수요의 관계를 이용한다. 데이터 마이닝의 기준으로 결정계수를 사용하였으며, 알고리즘은 k-nearest neighbor 절차를 사용하였다. 또한 제안된 기법은 2006년 특수일 전력 수요 예측을 통하여 기존 논문의 결과와 비교 분석하여 기존 방식 대비 특수일 전력 수요예측 관련 우수성을 검증하였다.

  • PDF

Water Quality Monitoring in Paldang using RS and GIS (RS/GIS를 이용한 팔당호 수질환경 모니터링)

  • Na, Sang-Il;Park, Jong-Hwa;Park, Jin-Ki;Lee, Kyo-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.520-524
    • /
    • 2010
  • 본 연구에서는 팔당호에 유입되는 북한강, 남한강, 경안천의 6개 지류에 대하여 2009년 6월부터 12월까지 10일 주기로 현장 측정한 10개의 수질평가 항목과 측정시기에 근접한 4장의 시계열 위성영상에 의한 수질분석 기법을 이용하여 RS/GIS에 의한 수질환경 모니터링을 실시하였다. 현장에서는 다항목 수질측정기(DS5, Hydrolab ; 센서장착포트 7개, 측정항목 : 수온, 탁도, EC, LDO)를 이용하였고, 채수를 통해 실내에서 T-N, T-P, BOD, COD, ph, 부유물질(이하, SS)을 측정하였다. 위성영상에 의한 수질인자는 수온, 탁도, SS 등을 선정하여 자료의 정성적 해석을 통해 팔당호의 수질환경 모니터링을 수행하였다. 또한, 위성영상으로 분석한 수질평가 자료는 현장자료와의 상관성을 검토하였으며 회귀분석을 실시하여 수질인자별 분포도를 작성하였다.

  • PDF

An Artificial Neural Network for Efficiently Learning and Representation the Advection and Remove of Fire-Flake Particles (불똥 입자의 이류과 삭제를 효율적으로 학습 표현하는 인공신경망)

  • Kim, Donghui;Kim, Jong-Hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.345-348
    • /
    • 2022
  • 본 논문에서는 유체 시뮬레이션(Fluid simulation)중 화염에서 표현되는 불똥 입자(Fire-flake particle)의 생성, 움직임과 삭제를 효율적으로 학습하고 표현할 수 있는 인공지능 기법에 대해 소개한다. 유체 시뮬레이션을 계산하기 위해서는 일반적으로 수치해석학과 같은 학문의 이해가 필요하며 불똥이나 거품과 같은 유체의 2차 효과(Secondary effect)는 기반유체(Underlying fluids)를 통해 추출되기 때문에 복잡하고 계산양이 많아진다. 이러한 문제를 완화하고자 본 논문에서는 인공신경망을 이용한 분류 모델 학습을 통해 격자 내에서 표현되어야 하는 불똥 입자의 생성을 학습하고, 다항 회귀 모델 학습을 통해 불똥 입자의 움직임을 예측한다. 또한, 불똥 입자가 삭제되어야하는 상태를 네트워크 학습을 통해 얻어내며, 수명(Lifespan) 임계값 조절하여 다양한 장면에서 불똥을 제어할 수 있다. 결과적으로 화염의 움직임을 기반으로 불똥의 움직임을 복잡한 수학식이나 디자이너에게 의존하지 않고 인공지능 학습을 통해 쉽게 제어하고 예측하는 결과를 보여준다.

  • PDF

Development of Forest Volume Estimation Model Using Airborne LiDAR Data - A Case Study of Mixed Forest in Aedang-ri, Chunyang-myeon, Bonghwa-gun - (항공 LiDAR 자료를 이용한 산림재적추정 모델 개발 - 봉화군 춘양면 애당리 혼효림을 대상으로 -)

  • CHO, Seung-Wan;KIM, Yong-Ku;PARK, Joo-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.20 no.3
    • /
    • pp.181-194
    • /
    • 2017
  • This study aims to develop a regression model for forest volume estimation using field-collected forest inventory information and airborne LiDAR data. The response variable of the model is forest stem volume, was measured by random sampling from each individual plot of the 30 circular sample plots collected in Bonghwa-gun, Gyeong sangbuk-do, while the predictor variables for the model are Height Percentiles(HP) and Height Bin(HB), which are metrics extracted from raw LiDAR data. In order to find the most appropriate model, the candidate models are constructed from simple linear regression, quadratic polynomial regression and multiple regression analysis and the cross-validation tests were conducted for verification purposes. As a result, $R^2$ of the multiple regression models of $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}$ among the estimated models was the highest at 0.509, and the PRESS statistic of the simple linear regression model of $HP_{25}$ was the lowest at 122.352. $HB_{5-10}$, $HB_{15-20}$, $HB_{20-25}$, and $HBgt_{25}-based$ models, thus, are comparatively considered more appropriate for Korean forests with complicated vertical structures.

An Analysis of Distributed Lag Effects of Expenditure by Type of R&D on Scientific Production: Focusing on the National Research Development Program (연구개발단계별 연구개발투자와 논문 성과 간의 시차효과 분석: 국가연구개발사업을 중심으로)

  • Pak, Cheol-Min;Ku, Bon-Chul
    • Journal of Korea Technology Innovation Society
    • /
    • v.19 no.4
    • /
    • pp.687-710
    • /
    • 2016
  • This study aims to empirically estimate distributed lag effects of expenditure by type of R&D on scientific publication in the national R&D program. To analyze the lag structure between them, we used a dataset comprised of panel data from 104 technologies categorized by 6T (IT, BT, NT, ST, ET, CT) from 2007 to 2014, and employed multiple regression analysis based on the polynomial distributed lag model. This is because it is highly likely to emerge multicollinearity, if a distributed lag model without special restrictions is applied to multiple regression analysis. The main results are as follows. In the case of basic research, its lag effects are relatively evenly distributed during four years. On the other hand, the applied research and experimental development have distributed lag effects for three years and two years respectively. Therefore, when it comes to analyzing performance of scientific publication, it is necessary to be performed with characteristics of the time lag by type of R&D.

Latent causal inference using the propensity score from latent class regression model (잠재범주회귀모형의 성향점수를 이용한 잠재변수의 원인적 영향력 추론 연구)

  • Lee, Misol;Chung, Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.5
    • /
    • pp.615-632
    • /
    • 2017
  • Unlike randomized trial, statistical strategies for inferring the unbiased causal relationship are required in the observational studies. The matching with the propensity score is one of the most popular methods to control the confounders in order to evaluate the effect of the treatment on the outcome variable. Recently, new methods for the causal inference in latent class analysis (LCA) have been proposed to estimate the average causal effect (ACE) of the treatment on the latent discrete variable. They have focused on the application study for the real dataset to estimate the ACE in LCA. In practice, however, the true values of the ACE are not known, and it is difficult to evaluate the performance of the estimated the ACE. In this study, we propose a method to generate a synthetic data using the propensity score in the framework of LCA, where treatment and outcome variables are latent. We then propose a new method for estimating the ACE in LCA and evaluate its performance via simulation studies. Furthermore we present an empirical analysis based on data form the 'National Longitudinal Study of Adolescents Health,' where puberty as a latent treatment and substance use as a latent outcome variable.

Predictive Factors on Level of Physical Activity in the Community Dwelling Elderly (노인의 신체활동 수준별 신체활동 예측요인)

  • Seo, Yeong-Mi;Kang, Mal-Soon;Jeon, Mi-Yang
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.151-160
    • /
    • 2016
  • The purpose of this study was to identify the factors that affect the level of physical activity targeted elderly and thereby propose a basis for physical activity promotion strategies. Methods : The study subjects were 164 older who agreed to participate and understand the purpose of the study. The collected data were analyzed using SPSS WIN 18.0 program multiple logistic regression. Results : Factors showing significant associations with physical activity are gender, spouse, education, job, chronic disease, BMI, subjective health status, perceived barriers, and social supports. In the logistic regression analysis, BMI and perceived barriers were significant factors related to minimal physical activity while chronic disease, BMI, subjective health status, and perceived barriers appeared to be significantly associated with health enhancing physical activity. The result suggest that policy should be established to increasing the level of physical activity.

A Longitudinal Analysis of Adolescents' Achievement Motivation Profiles and their Relationship to Academic Achievement in Multicultural Family (잠재계층성장모형을 적용한 다문화 가정 자녀의 성취동기 변화 유형 및 예측요인 탐색: 학업성취 수준의 차이를 중심으로)

  • Yeon, Eun Mo;Choi, Hyo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.404-414
    • /
    • 2020
  • This study aims to explore latent classes in terms of changing patterns in achievement motivation among the samples from elementary school to middle school students in multicultural families and to investigate factors to predict latent groups and their relationship with academic achievement. 1254 pairs of mother and child from the 1st to 6th years of Multicultural Adolescents Panel Study (MAPS) was utilized for the Latent Class Growth Analysis (LCGA), One-way ANOVA, Multinomial Logistic Regression. The results showed that there were four distinct subgroups within the samples in terms of achievement goal orientations (i.e. very-high changing group, average changing group, low stable group, very-low stable group) at all six time points, and students who reported high achievement motivation were likely to have higher academic achievement. Four groups were extracted based on parent's efficacy, students' self-esteem, and teacher's support. Suggestions and practical implications for understanding the types of subgroups for the achievement motivation of multicultural families were discussed.

Implementation of the Color Matching Between Mobile Camera and Mobile LCD Based on RGB LUT (모바일 폰의 카메라와 LCD 모듈간의 RGB 참조표에 기반한 색 정합의 구현)

  • Son Chang-Hwan;Park Kee-Hyon;Lee Cheol-Hee;Ha Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.3 s.309
    • /
    • pp.25-33
    • /
    • 2006
  • This paper proposed device-independent color matching algorithm based on the 3D RGB lookup table (LUT) between mobile camera and mobile LCD (Liquid Crystal Display) to improve the color-fidelity. Proposed algorithm is composed of thee steps, which is device characterization, gamut mapping, 3D RGB-LUT design. First, the characterization of mobile LCD is executed using the sigmoidal function, different from conventional method such as GOG (Gain Offset Gamma) and S-curve modeling, based on the observation of electro-optical transfer function of mobile LCD. Next, mobile camera characterization is conducted by fitting the digital value of GretagColor chart captured under the daylight environment (D65) and tristimulus values (CIELAB) using the polynomial regression. However, the CIELAB values estimated by polynomial regression exceed the maximum boundary of the CIELAB color space. Therefore, these values are corrected by linear compression of the lightness and chroma. Finally, gamut mapping is used to overcome the gamut difference between mobile camera and moible LCD. To implement the real-time processing, 3D RGB-LUT is designed based on the 3D RGB-LUT and its performance is evaluated and compared with conventional method.