• Title/Summary/Keyword: 다항식 회귀 모델

Search Result 36, Processing Time 0.023 seconds

A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis (다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구)

  • Chae, Gyoo-Soo
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.6
    • /
    • pp.1-6
    • /
    • 2019
  • In this study, the development of a weight estimation model of electronic scale with nonlinear characteristics is presented using polynomial regression analysis. The output voltage of the load cell was measured directly using the reference mass. And a polynomial regression model was obtained using the matrix and curve fitting function of MS Office Excel. The weight was measured in 100g units using a load cell electronic scale measuring up to 5kg and the polynomial regression model was obtained. The error was calculated for simple($1^{st}$), $2^{nd}$ and $3^{rd}$ order polynomial regression. To analyze the suitability of the regression function for each model, the coefficient of determination was presented to indicate the correlation between the estimated mass and the measured data. Using the third order polynomial model proposed here, a very accurate model was obtained with a standard deviation of 10g and the determinant coefficient of 1.0. Based on the theory of multi regression model presented here, it can be used in various statistical researches such as weather forecast, new drug development and economic indicators analysis using logistic regression analysis, which has been widely used in artificial intelligence fields.

Design of GA-based Fuzzy Polynomial Neural Networks Architecture (유전자 기반 퍼지다항식 뉴럴네트워크 구조의 설계)

  • 박병준;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.442-445
    • /
    • 2004
  • 본 논문은 유전자 기반 퍼지다항식 뉴럴네트워크(Genetic based fuzzy polynomial neural networks: gFPNN)를 제안한다. gFPNN 구조는 퍼지집합을 기반으로 설계되며, 유전자 알고리즘에 의해 구조 및 파라미터를 최적화한 구조이다. 퍼지집합을 기반으로 설계되어진 퍼지뉴럴네트워크는 간략추론 구조와 선형추론 구조로 설계된다. 본 논문에서는 간략추론 및 선형추론 구조를 통합 및 확장한 퍼지다항식 뉴럴네트워크를 설계한다. 이 구조는 연결가중치를 이용하여 회귀다항식을 네트워크 구조로 표현하며, 간략추론(Type 0), 선형추론(Type 1), 회귀다항식추론(Type 2)을 모두 포함한다. 또한 퍼지규칙 후반부의 다항식 차수를 각 규칙에 대해 다르게 선택할 수 있으며, 일률적인 형식의 구조를 벗어나 주어진 시스템의 특성에 따라 유연한 구조를 설계할 수 있도록 한다. 여기에 더하여, 네트워크 구조와 파라미터 동조에 유전자 알고리즘을 적용하며, 구조와 파라미터 동정에 대한 효율적인 방법을 논의한다. 제안된 모델의 평가를 위해 수치예제를 이용한다.

  • PDF

A Study on Optimal Identification of Fuzzy Polynomial Neural Networks Model Using Genetic Algorithms (유전자 알고리즘을 이용한 FPNN 모델의 최적 동정에 관한 연구)

  • 이인태;박호성;오성권
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.429-432
    • /
    • 2004
  • 본 논문은 기존의 퍼지 다항식 뉴럴 네트워크 (Fuzzy Polynomial Neural Networks ; FPNN) 모델을 이용하여 비선형성 데이터에 대한 추론을 제안한다. 복잡한 비선형 시스템의 모델동정을 위하여 생성된 GMDH 방법에 기초한 FPNN의 각 노드는 퍼지 규칙을 기반으로 구축되었으며, 층이 진행되는 동안 모델 스스로 노드의 선택과 제거를 통해 최적의 네트워크 구조를 생성할 수 있는 유연성을 가지고 있다. FPNN 각각의 활성노드를 퍼지다항식 뉴론(Fuzzy Polynomial Neuron ; FPN)이라고 표현한다. FPNN의 후반부 구조는 입출력 변수 사이 의 간략과 회귀다항식 (1차, 2차, 변형된 2차식) 함수에 의해 구현된다. 규칙의 전반부 멤버쉽 함수는 삼각형과 가우시안형의 멤버쉽 함수가 사용된다. 또한 유전자 알고리즘을 사용하여 각노드의 부분표현식을 구성하는 입력변수의 수, 입력변수와 차수의 선택 동조를 통하여 최적의 Genetic Algorithms(GAs)을 이용한 FPNN모델을 설계하는 것이 유용하고 효과적임을 보인다.

  • PDF

Design of Regression Model and Pattern Classifier by Using Principal Component Analysis (주성분 분석법을 이용한 회귀다항식 기반 모델 및 패턴 분류기 설계)

  • Roh, Seok-Beom;Lee, Dong-Yoon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.6
    • /
    • pp.594-600
    • /
    • 2017
  • The new design methodology of prediction model and pattern classification, which is based on the dimension reduction algorithm called principal component analysis, is introduced in this paper. Principal component analysis is one of dimension reduction techniques which are used to reduce the dimension of the input space and extract some good features from the original input variables. The extracted input variables are applied to the prediction model and pattern classifier as the input variables. The introduced prediction model and pattern classifier are based on the very simple regression which is the key point of the paper. The structural simplicity of the prediction model and pattern classifier leads to reducing the over-fitting problem. In order to validate the proposed prediction model and pattern classifier, several machine learning data sets are used.

Outlier-Object Detection Using an Image Pair Based on Regression Analysis: Noise Variance Estimation and Performance Analysis (영상 쌍에서 회귀분석에 기초한 이상 물체 검출: 잡음분산의 추정과 성능 분석)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.5
    • /
    • pp.25-34
    • /
    • 2008
  • By comparing two images, which are captured with the same scene at different time, we can detect a set of outliers, such as occluding objects due to moving vehicles. To reduce the influence from the different intensity properties of the images, an intensity compensation scheme, which is based on the polynomial regression model, is employed. For an accurate detection of outliers alleviating the influence from a set of outliers, a simple technique that reruns the regression is employed. In this paper, an algorithm that iteratively reruns the regression is theoretically analyzed by observing the convergence property of the estimates of the noise variance. Using a correction constant for the estimate of the noise variance is proposed. The correction enables the detection algorithm robust to the choice of thresholds for selecting outliers. Numerical analysis using both synthetic and Teal images are also shown in this paper to show the robust performance of the detection algorithm.

Robust Outlier-Object Detection in Image Pairs Based on Variable Threshold Using Empirical Correction Constant (실험적 교정상수를 사용한 가변문턱값에 기초한 영상 쌍에서의 강인한 이상 물체 검출)

  • Kim, Dong-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • By calculating the differences between two images, which are captured with the same scene at different time, we can detect a set of outliers, such as occluding objects due to moving vehicles. To reduce the influence from the different intensity properties of the images, a simple technique that reruns the regression, which is based on the polynomial regression model, is employed. For a robust detection of outliers, the image difference is normalized by the noise variance. Hence, an accurate estimate of the noise variance is very important. In this paper, using an empirically obtained correction constant is proposed. Numerical analysis using both synthetic and real images are also shown in this paper to show the robust performance of the detection algorithm.

A Model for Software Effort Estimation in the Development Subcycles (소프트웨어 개발 세부단계 노력 추정 모델)

  • 박석규;박영목;박재흥
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.6
    • /
    • pp.859-866
    • /
    • 2001
  • Successful project planning relies on a good estimation of the effort required to complete a project, together with the schedule options that may be available. Despite the extensive research done developing new and better models, existing software effort estimation models are present only the total effort and effort (or manpower: people per unit time) function for the software life-cycle. Also, Putnam presents constant effort rate in each subcycles. However, the size of total efforts are variable according to the software projects under the influence of its size, complexity and operational environment. As a result, the allocated effort in subcycle also differ from project to project. This paper suggests the linear and polynomial effort estimation models in specifying, building and testing phase followed by the project total effort. These models are derived from 128 different projects. This result can be considered as a practical guideline in management of project schedule and effort allocation.

  • PDF

The Analysis and Design of Advanced Neurofuzzy Polynomial Networks (고급 뉴로퍼지 다항식 네트워크의 해석과 설계)

  • Park, Byeong-Jun;O, Seong-Gwon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.3
    • /
    • pp.18-31
    • /
    • 2002
  • In this study, we introduce a concept of advanced neurofuzzy polynomial networks(ANFPN), a hybrid modeling architecture combining neurofuzzy networks(NFN) and polynomial neural networks(PNN). These networks are highly nonlinear rule-based models. The development of the ANFPN dwells on the technologies of Computational Intelligence(Cl), namely fuzzy sets, neural networks and genetic algorithms. NFN contributes to the formation of the premise part of the rule-based structure of the ANFPN. The consequence part of the ANFPN is designed using PNN. At the premise part of the ANFPN, NFN uses both the simplified fuzzy inference and error back-propagation learning rule. The parameters of the membership functions, learning rates and momentum coefficients are adjusted with the use of genetic optimization. As the consequence structure of ANFPN, PNN is a flexible network architecture whose structure(topology) is developed through learning. In particular, the number of layers and nodes of the PNN are not fixed in advance but is generated in a dynamic way. In this study, we introduce two kinds of ANFPN architectures, namely the basic and the modified one. Here the basic and the modified architecture depend on the number of input variables and the order of polynomial in each layer of PNN structure. Owing to the specific features of two combined architectures, it is possible to consider the nonlinear characteristics of process system and to obtain the better output performance with superb predictive ability. The availability and feasibility of the ANFPN are discussed and illustrated with the aid of two representative numerical examples. The results show that the proposed ANFPN can produce the model with higher accuracy and predictive ability than any other method presented previously.

Determining Input Values for Dragging Anchor Assessments Using Regression Analysis (회귀분석을 이용한 주묘 위험성 평가 입력요소 결정에 관한 연구)

  • Kang, Byung-Sun;Jung, Chang-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.6
    • /
    • pp.822-831
    • /
    • 2021
  • Although programs have been developed to evaluate the risk of dragging anchors, it is practically difficult for VTS(vessel traffic service) operators to calculate and evaluate these risks by obtaining input factors from anchored ships. Therefore, in this study, the gross tonnage (GT) that could be easily obtained from the ship by the VTS operators was set as an independent variable, and linear and nonlinear regression analyses were performed using the input factors as the dependent variables. From comparing the fit of the polynomial model (linear) and power series model (nonlinear), the power series model was evaluated to be more suitable for all input factors in the case of container ships and bulk carriers. However, in the case of tanker ships, the power supply model was suitable for the LBP(length between perpendiculars), width, and draft, and the polynomial model was evaluated to be more suitable for the front wind pressure area, weight of the anchor, equipment number, and height of the hawse pipe from the bottom of the ship. In addition, all other dependent variables, except for the front wind pressure area factor of the tanker ship, showed high degrees of fit with a coefficient of determination (R-squared value) of 0.7 or more. Therefore, among the input factors of the dragging anchor risk assessment program, all factors except the external force, seabed quality, water depth, and amount of anchor chain let out are automatically applied by the regression analysis model formula when only the GT of the ship is provided.

A UCP-based Model to Estimate the Software Development Cost (소프트웨어 개발 비용을 추정하기 위한 사용사례 점수 기반 모델)

  • Park, Ju-Seok;Chong, Ki-Won
    • The KIPS Transactions:PartD
    • /
    • v.11D no.1
    • /
    • pp.163-172
    • /
    • 2004
  • In the software development project applying object-oriented development methodology, the research on the UCP(Use Case Point) as a method to estimate development effort is being carried on. The existing research proposes the linear model calculating the development effort that multiplies an invariant on AUCP(Adjusted Use Case Point) which applied technical and environmental factors. However, the statistical model that estimates the development effort using AUCP and UUCP(Unadjusted Use Case Point) is not being studied. The irrelevant relationship of the linear regression model, whose development period is increasing tremendously as the software size increases, is confirmed. Moreover, during the UCP calculating process, there can be errors in FP by applying the TCF(Technical Complexity Factor) and EF(Environmental Factor). This paper presents a non-linear regression model, that does not consider the TCF and EF, and that estimate the development effort from UUCP directly by utilizing the exponential function. An exponential function is selected among the linear, logarithm, polynomial, power, and exponential model via statistical evaluations of the models mentioned above.