• Title/Summary/Keyword: 다치가산기

Search Result 12, Processing Time 0.015 seconds

Design of a High Performance Multiplier Using Current-Mode CMOS Quaternary Logic Circuits (전류모드 CMOS 4치 논리회로를 이용한 고성능 곱셈기 설계)

  • Kim, Jong-Soo;Kim, Jeong-Beom
    • Journal of IKEEE
    • /
    • v.9 no.1 s.16
    • /
    • pp.1-6
    • /
    • 2005
  • This paper proposes a high performance multiplier using CMOS multiple-valued logic circuits. The multiplier based on the Modified Baugh-Wooley algorithm is designed with current-mode CMOS quaternary logic circuits. The multiplier is functionally partitioned into the following major sections: partial product generator block(binary-quaternary logic conversion block), current-mode quaternary logic full-adder block, and quaternary-binary logic conversion block. The proposed multiplier has 4.5ns of propagation delay and 6.1mW of power consumption. This multiplier can easily adapted to the binary system by the encoder and the decoder. This circuit is designed with 0.35um standard CMOS process at 3.3V supply voltage and 5uA unit current. The validity and effectiveness are verified through the HSPICE simulation.

  • PDF

A Study on the Parallel Multiplier over $GF(3^m)$ Using AOTP (AOTP를 적용한 $GF(3^m)$ 상의 병렬승산기 설계에 관한 연구)

  • Han, Sung-Il;Hwang, Jong-Hak
    • Journal of IKEEE
    • /
    • v.8 no.2 s.15
    • /
    • pp.172-180
    • /
    • 2004
  • In this paper, a parallel Input/Output modulo multiplier, which is applied to AOTP(All One or Two Polynomials) multiplicative algorithm over $GF(3^m)$, has been proposed using neuron-MOS Down-literal circuit on voltage mode. The three-valued input of the proposed multiplier is modulated by using neuron-MOS Down-literal circuit and the multiplication and Addition gates are implemented by the selecting of the three-valued input signals transformed by the module. The proposed circuits are simulated with the electrical parameter of a standard $0.35{\mu}m$CMOS N-well doubly-poly four-metal technology and a single +3V supply voltage. In the simulation result, the multiplier shows 4 uW power consumption and 3 MHzsampling rate and maintains output voltage level in ${\pm}0.1V$.

  • PDF