본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.
다층 퍼셉트론 신경회로망 모델이 여러가지 복잡한 문제를 역전파 학습에 의하여 해결할 수 있다고 보고된 후로, 이 모델을 이용한 응용분야의 연구가 활발하다. 그렇지만, 이 다층 퍼셉트론 모델은 오랜 학습시간이 필요하며, 또 분류경계가 입력층과 숨겨진 층간의 연결가중치에 의해 결정되는 초기하 평면의 조합으로 이루어지기 때문에, 숨겨진 층의 뉴런 수가 부족하면 분류경계를 제대로 나타낼 수 없게 된다. 이러한 단점들을 극복하기 위하여 숨겨진 층의 활성화 함수는 시그모이드 형태가 아닌 가우스 함수가 되도록 하고 이 가우스 함수들의 선형적 합에 의하여 출력층 뉴런들의 값이 결정되는, 즉, 가우스 함수가 출력층의 전위함수(potential function)가 되는 신경회로망이 여러번 제안되었다. 본 논문에서는 가우스 함수를 전위함수로 가지는 신경회로망 모델들에 대하여 이 모델들의 실제 응용 예와 함께 알아보겠다.
홈 트레이닝을 하는 사람들은 전문적인 대면 지도가 없기 때문에 잘못된 자세로 동작을 하여 신체에 무리가 올 수 있다. 본 연구에서는 자세 예측 모델과 다층 퍼셉트론을 이용하여 사용자의 자세를 교정 해주는 "영상 데이터 기반 동작 분류 및 자세 교정 시스템"을 제안한다. 자세 예측 모델로 뼈대 정보를 예측한 후 심층 신경망을 이용하여 어떤 운동 동작인지를 분류한 뒤, 올바른 관절의 각도를 알려주며 교정이 이루어진다. 이 과정에서 동작 분류 모델의 성능을 향상시키기 위해 연속적인 프레임들의 결과를 고려하는 투표 알고리즘을 적용하였다. 다층 퍼셉트론 기반 모델을 자세 분류 모델로 사용했을 때 0.9의 정확도를 가진다. 그리고 투표 알고리즘을 통해 분류 모델의 정확도는 0.93으로 향상된다.
본 논문에서는 블록 분류와 코딩과 함께 신경회로망을 이용한 영상압축을 보였다. 오차 역전파 알고리즘으로 학습되는 다층구조 신경회로망은 정규화된 영상데이타를 감소된 공간 중복성을 가지는 은닉층의 값으로 변환하는데 사용된다. 기본적으로 영상압축은 입력층과 출력층의 뉴런보다 적은 수의 은닉층 뉴런에 의해 얻어진다. 여기에 시각체계의 민감도에 따른 영상블럭 복잡성에 따라 적응적으로 압축되므로 블록을 분류한다. 또한 은닉뉴런의 양자화된 값은 효과적인 전송을 위해 entropy coding을 이용한 경우 화질의 큰 저하없이 약 25:1의 압축률을 얻었다.
본 연구의 목적은 학교폭력 잠재집단이 각 유형별 피해경험과 가해경험에 따라 어떻게 나눠지는지 살펴보고, 이러한 잠재집단 분류에 개인과 학교 요인들이 미치는 영향을 검증하는 것이다. 이를 위해 서울교육종단연구(SELS2010)의 초등학교 4학년 패널의 5차 자료 중 학교폭력을 한번 이상 경험한 학생 2,195명의 학교폭력 피해 및 가해경험에 대해 다층 잠재프로파일 모형(multilevel latent profile model)을 적용하여 분석하였다. 분석 결과, 학교폭력 가해 및 피해경험을 종류별, 수준별로 모두 고려하였을 때 가해피해 고수준집단(1.7%), 가해위주집단(2.1%), 피해위주집단(3.7%), 언어적 폭력경험집단(92.5%)의 4가지의 집단으로 분류되었다. 영향요인 검증 결과, 학생수준에서 성별, 탄력성, 자기통제력, 친구관계, 부모자녀관계가 유의하게 나타났고, 학교수준에서 교사학생관계, 학교폭력 예방교육, 학교 내 성비가 유의하게 나타났다. 본 연구는 학교폭력 가해와 피해 경험을 모두 포함하여 빈도별, 유형별로 집단을 한 번에 분류하여 이론적 논의를 확장하였고, 다층자료임을 반영하여 개인수준과 학교수준의 영향요인을 동시에 검증했다는 점에서 의의가 있다.
숫자 인식 분야는 인식 분야에서도 오래된 분야이며 다양한 방법이 제시되어 있는데, 그 중 다중 퍼셉트로 신경망을 이용한 숫자 분류기에 대한 비교 분석을 수행한다. 특히 복잡한 문제를 여러 개의 단순한 문제로 나누는 방식의, 각 숫자에 대한 독립적인 분류기를 설계하는 방식에 대하여 분석을 수행한다. 일반적인 하나의 분류기로 전체 숫자를 분류하는 방식과의 비교를 통하여 숫자 분류에는 각 숫자에 대한 독립적인 분류기를 이용하는 것이 적합하다는 사실을 실험적으로 확인하였다.
신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.
의약품을 자동 포장하는 시스템에서는 캐니스터(Canister)에 해당 약을 정확히 보충할 수 있는 해당 약통과 캐니스터와의 일치 여부를 판단하는 정합 알고리즘이 필수적이다. 본 논문에서는 약화사고 방지를 위해 많은 종류의 약통을 분류하기 위한 분류 성능뿐만 아니라 실시간으로 처리할 수 있는 상 하 계층으로 구성된 계층적 신경회로망을 제안한다. 먼저 약통 정보를 나타내는 라벨 영상으로부터 다수의 저 차원 특징 벡터를 추출한다. 추출된 특징 벡터를 사용하여 하위계층의 다층 퍼셉트론(MLP, Multi-layer Perceptron) 신경회로망을 학습한다. 다음으로 학습된 MLP의 중간층 출력을 입력으로 사용하여 상위계층의 MLP를 학습한다. 100개의 약통에 대해 좌우 30도까지 회전한 영상에 대해 제안한 계층적 신경회로망의 분류 성능 시험과 실시간 연산처리 성능의 우수함을 보였다.
심실세동은 심장의 무질서한 전기적 활동으로 인해 심근 수축이 동시에 이뤄지지 않게 되어 급성심장사에 이르게 하는 부정맥이다. 본 연구에서는 이러한 심실세동 검출을 위해 적은 양의 학습 데이터만으로 좋은 분류 성능을 보이는 SVM(Support Vector Machine) 분류기 기반의 심실세동 검출 알고리즘을 제안하였다. 심전도 신호로부터 SVM 분류기에 입력할 입력 특징을 추출하기 위하여 웨이브렛 변환기반의 대역통과 필터링, R점 검출, 입력 특징 추출구간 설정의 전처리 과정을 수행하였으며 입력 특징으로는 리듬 기반의 정보 및 웨이브렛 변환 계수를 선택하였다. SVM 다원분류기는 정상리듬(NSR) 분류기, 심실 세동과 유사한 심실빈맥(VT) 분류기, 심실세동(VF) 분류기 그리고 그 외 부정맥 분류기로 구성하였다. SVM 분류기의 파라미터 C값과 ${\alpha}$값은 실험을 통하여 최고 성능을 나타내는 C=10, ${\alpha}=1$을 선택하였다. SVM 다원 분류기를 통한 정상리듬, 심실빈맥 심실세동의 검출 평균값은 98.39%, 96.92%, 99.88%의 우수한 검출 성능을 나타냈다. 본 연구에서 제안된 동일 입력특징을 사용하여 SVM 분류기의 심실세동 검출 결과와 다층퍼셉트론 신경망 및 퍼지추론 방법에 의한 결과를 비교하였으며 SVM 분류기가 비슷하거나 우수한 결과를 보였다. 또한 기존 다른 알고리즘에 비하여도 우수한 결과를 보임으로써 제안된 입력 특징을 통한 SVM 분류기 기반의 심실세동 검출이 유용함을 확인할 수 있었다.
본 연구에서는 정보시스템의 지능형 인터페이스를 위하여 사용자의 개인성을 학습하는 방법론으로서 신경망 이론의 활용가능성을 고찰한다. 입력형식의 유연성, 입력의 왜곡 및 소실가능성 등 시스템의 실용성과 연관하여 나타나는 자료의 특성을 수용하기 위하여, 학습과정에서 신호표현의 다양화와 부분 패턴의 의한 분류 기능 등을 개선한 신경망모델을 제안한다. 이를 위하여 퍼지 양방향 연상기억장치와 구간연산으로 일반화된 다층 신경망모델을 결합하여 혼합형 분류모형을 제시하고 그 유용성을 고찰한다. 실험은 전공분야 선택을 위한 개인의 적성분석시스템을 대상으로 구현하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.