• 제목/요약/키워드: 다층 분류

검색결과 192건 처리시간 0.026초

심층 CNN을 활용한 영상 분위기 분류 및 이를 활용한 동영상 자동 생성 (Image Mood Classification Using Deep CNN and Its Application to Automatic Video Generation)

  • 조동희;남용욱;이현창;김용혁
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.23-29
    • /
    • 2019
  • 본 연구에서는 영상의 분위기를 심층 합성곱 신경망을 통해 8 가지로 분류하고, 이에 맞는 배경 음악을 적용하여 동영상을 자동적으로 생성하였다. 수집된 이미지 데이터를 바탕으로 다층퍼셉트론을 사용하여 분류 모델을 학습한다. 이를 활용하여 다중 클래스 분류를 통해 동영상 생성에 사용할 이미지의 분위기를 예측하며, 미리 분류된 음악을 매칭시켜 동영상을 생성한다. 10겹 교차 검증의 결과, 72.4%의 정확도를 얻을 수 있었고, 실제 영상에 대한 실험에서 64%의 오차 행렬 정확도를 얻을 수 있었다. 오답의 경우, 주변의 비슷한 분위기로 분류하여 동영상에서 나오는 음악과 크게 위화감이 없음을 확인하였다.

가우스 전위함수를 가지는 신경회로망 모델

  • 오상훈;김명원
    • 전자통신동향분석
    • /
    • 제5권2호
    • /
    • pp.39-50
    • /
    • 1990
  • 다층 퍼셉트론 신경회로망 모델이 여러가지 복잡한 문제를 역전파 학습에 의하여 해결할 수 있다고 보고된 후로, 이 모델을 이용한 응용분야의 연구가 활발하다. 그렇지만, 이 다층 퍼셉트론 모델은 오랜 학습시간이 필요하며, 또 분류경계가 입력층과 숨겨진 층간의 연결가중치에 의해 결정되는 초기하 평면의 조합으로 이루어지기 때문에, 숨겨진 층의 뉴런 수가 부족하면 분류경계를 제대로 나타낼 수 없게 된다. 이러한 단점들을 극복하기 위하여 숨겨진 층의 활성화 함수는 시그모이드 형태가 아닌 가우스 함수가 되도록 하고 이 가우스 함수들의 선형적 합에 의하여 출력층 뉴런들의 값이 결정되는, 즉, 가우스 함수가 출력층의 전위함수(potential function)가 되는 신경회로망이 여러번 제안되었다. 본 논문에서는 가우스 함수를 전위함수로 가지는 신경회로망 모델들에 대하여 이 모델들의 실제 응용 예와 함께 알아보겠다.

홈 트레이닝을 위한 운동 동작 분류 및 교정 시스템 (Pose Classification and Correction System for At-home Workouts)

  • 강재민;박성수;김윤수;감진규
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1183-1189
    • /
    • 2021
  • 홈 트레이닝을 하는 사람들은 전문적인 대면 지도가 없기 때문에 잘못된 자세로 동작을 하여 신체에 무리가 올 수 있다. 본 연구에서는 자세 예측 모델과 다층 퍼셉트론을 이용하여 사용자의 자세를 교정 해주는 "영상 데이터 기반 동작 분류 및 자세 교정 시스템"을 제안한다. 자세 예측 모델로 뼈대 정보를 예측한 후 심층 신경망을 이용하여 어떤 운동 동작인지를 분류한 뒤, 올바른 관절의 각도를 알려주며 교정이 이루어진다. 이 과정에서 동작 분류 모델의 성능을 향상시키기 위해 연속적인 프레임들의 결과를 고려하는 투표 알고리즘을 적용하였다. 다층 퍼셉트론 기반 모델을 자세 분류 모델로 사용했을 때 0.9의 정확도를 가진다. 그리고 투표 알고리즘을 통해 분류 모델의 정확도는 0.93으로 향상된다.

다층구조 퍼셉트론을 이용한 분류 영상압축 및 코딩 (Classified Image Compression and Coding using Multi-Layer Percetpron)

  • 조광보;박철훈;이수영
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2264-2275
    • /
    • 1994
  • 본 논문에서는 블록 분류와 코딩과 함께 신경회로망을 이용한 영상압축을 보였다. 오차 역전파 알고리즘으로 학습되는 다층구조 신경회로망은 정규화된 영상데이타를 감소된 공간 중복성을 가지는 은닉층의 값으로 변환하는데 사용된다. 기본적으로 영상압축은 입력층과 출력층의 뉴런보다 적은 수의 은닉층 뉴런에 의해 얻어진다. 여기에 시각체계의 민감도에 따른 영상블럭 복잡성에 따라 적응적으로 압축되므로 블록을 분류한다. 또한 은닉뉴런의 양자화된 값은 효과적인 전송을 위해 entropy coding을 이용한 경우 화질의 큰 저하없이 약 25:1의 압축률을 얻었다.

  • PDF

다층 잠재프로파일 분석을 적용한 중학생의 학교폭력 집단 분류와 개인 및 학교요인 검증 (Classification of Student's School Violence During Middle School: Applying Multilevel Latent Profile Models to Test Individual and School Effects)

  • 노언경;이은수;이현정;홍세희
    • 한국조사연구학회지:조사연구
    • /
    • 제18권2호
    • /
    • pp.67-98
    • /
    • 2017
  • 본 연구의 목적은 학교폭력 잠재집단이 각 유형별 피해경험과 가해경험에 따라 어떻게 나눠지는지 살펴보고, 이러한 잠재집단 분류에 개인과 학교 요인들이 미치는 영향을 검증하는 것이다. 이를 위해 서울교육종단연구(SELS2010)의 초등학교 4학년 패널의 5차 자료 중 학교폭력을 한번 이상 경험한 학생 2,195명의 학교폭력 피해 및 가해경험에 대해 다층 잠재프로파일 모형(multilevel latent profile model)을 적용하여 분석하였다. 분석 결과, 학교폭력 가해 및 피해경험을 종류별, 수준별로 모두 고려하였을 때 가해피해 고수준집단(1.7%), 가해위주집단(2.1%), 피해위주집단(3.7%), 언어적 폭력경험집단(92.5%)의 4가지의 집단으로 분류되었다. 영향요인 검증 결과, 학생수준에서 성별, 탄력성, 자기통제력, 친구관계, 부모자녀관계가 유의하게 나타났고, 학교수준에서 교사학생관계, 학교폭력 예방교육, 학교 내 성비가 유의하게 나타났다. 본 연구는 학교폭력 가해와 피해 경험을 모두 포함하여 빈도별, 유형별로 집단을 한 번에 분류하여 이론적 논의를 확장하였고, 다층자료임을 반영하여 개인수준과 학교수준의 영향요인을 동시에 검증했다는 점에서 의의가 있다.

다층 퍼셉트론 신경망을 이용한 숫자 분류기 설계 방식 분석 및 비교 (Analysis and Comparison of Numeral Classifiers Based on the Multilayer Perceptron)

  • 김세송;김동욱;정승원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2017년도 춘계학술발표대회
    • /
    • pp.951-952
    • /
    • 2017
  • 숫자 인식 분야는 인식 분야에서도 오래된 분야이며 다양한 방법이 제시되어 있는데, 그 중 다중 퍼셉트로 신경망을 이용한 숫자 분류기에 대한 비교 분석을 수행한다. 특히 복잡한 문제를 여러 개의 단순한 문제로 나누는 방식의, 각 숫자에 대한 독립적인 분류기를 설계하는 방식에 대하여 분석을 수행한다. 일반적인 하나의 분류기로 전체 숫자를 분류하는 방식과의 비교를 통하여 숫자 분류에는 각 숫자에 대한 독립적인 분류기를 이용하는 것이 적합하다는 사실을 실험적으로 확인하였다.

신경망과 다단계 연관규칙을 이용한 구매 패턴 분류 시스템의 설계 (Design of Purchasing Pattern Classification System Using Nural Network and Multiple-Level Association Rules)

  • 이종민;정홍
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.203-206
    • /
    • 2000
  • 신경망을 이용해 고객집단을 분류하고 고객의 특성에 따라 세분화된 고객들에 대해 다단계 연관규칙을 적용해서 고객의 상품 구매패턴을 찾아 줌으로써 마케팅 전략 결정을 지원하는 구매패턴분류 시스템을 설계한다. 고객분류를 위한 신경망 시스템은 다층 퍼셉트론에 역전파 알고리즘을 이용한다. 주소, 구매금액, 구매횟수, 고객 구분, 상긴 등과 같은 고객정보를 입력층에 입력변수로 지정하고, 이에 따른 우량/일반고객을 출력변수로 지정한 후 신경망을 학습시키면, 실제의 우량/일반의 간과 예측되는 우량/일반의 값의 차이론 최소화시키면서 모형을 형성시켜 나가게 된다. 구매패턴 분류 시스템은 다단계 연관규칙을 이용한다. 고객분류 서브시스템을 통해 고객집단이 세분화되면 각각의 고객집단에 대해 TID와 품목 트랜잭션을 입력으로 cumulate 알고리즘과 개념계층을 이용해 일반화 과정을 수행하면서 빈발 항목을 찾게 되고 이론 근거로 항목간의 연관규칙을 찾아내게 된다.

  • PDF

실시간 약통 분류를 위한 계층적 신경회로망 (Hierarchical Neural Network for Real-time Medicine-bottle Classification)

  • 김정준;김태훈;류강수;이대식;이종학;박길흠
    • 한국지능시스템학회논문지
    • /
    • 제23권3호
    • /
    • pp.226-231
    • /
    • 2013
  • 의약품을 자동 포장하는 시스템에서는 캐니스터(Canister)에 해당 약을 정확히 보충할 수 있는 해당 약통과 캐니스터와의 일치 여부를 판단하는 정합 알고리즘이 필수적이다. 본 논문에서는 약화사고 방지를 위해 많은 종류의 약통을 분류하기 위한 분류 성능뿐만 아니라 실시간으로 처리할 수 있는 상 하 계층으로 구성된 계층적 신경회로망을 제안한다. 먼저 약통 정보를 나타내는 라벨 영상으로부터 다수의 저 차원 특징 벡터를 추출한다. 추출된 특징 벡터를 사용하여 하위계층의 다층 퍼셉트론(MLP, Multi-layer Perceptron) 신경회로망을 학습한다. 다음으로 학습된 MLP의 중간층 출력을 입력으로 사용하여 상위계층의 MLP를 학습한다. 100개의 약통에 대해 좌우 30도까지 회전한 영상에 대해 제안한 계층적 신경회로망의 분류 성능 시험과 실시간 연산처리 성능의 우수함을 보였다.

SVM 분류기를 통한 심실세동 검출 (SVM Classifier for the Detection of Ventricular Fibrillation)

  • 송미혜;이전;조성필;이경중
    • 전자공학회논문지SC
    • /
    • 제42권5호
    • /
    • pp.27-34
    • /
    • 2005
  • 심실세동은 심장의 무질서한 전기적 활동으로 인해 심근 수축이 동시에 이뤄지지 않게 되어 급성심장사에 이르게 하는 부정맥이다. 본 연구에서는 이러한 심실세동 검출을 위해 적은 양의 학습 데이터만으로 좋은 분류 성능을 보이는 SVM(Support Vector Machine) 분류기 기반의 심실세동 검출 알고리즘을 제안하였다. 심전도 신호로부터 SVM 분류기에 입력할 입력 특징을 추출하기 위하여 웨이브렛 변환기반의 대역통과 필터링, R점 검출, 입력 특징 추출구간 설정의 전처리 과정을 수행하였으며 입력 특징으로는 리듬 기반의 정보 및 웨이브렛 변환 계수를 선택하였다. SVM 다원분류기는 정상리듬(NSR) 분류기, 심실 세동과 유사한 심실빈맥(VT) 분류기, 심실세동(VF) 분류기 그리고 그 외 부정맥 분류기로 구성하였다. SVM 분류기의 파라미터 C값과 ${\alpha}$값은 실험을 통하여 최고 성능을 나타내는 C=10, ${\alpha}=1$을 선택하였다. SVM 다원 분류기를 통한 정상리듬, 심실빈맥 심실세동의 검출 평균값은 98.39%, 96.92%, 99.88%의 우수한 검출 성능을 나타냈다. 본 연구에서 제안된 동일 입력특징을 사용하여 SVM 분류기의 심실세동 검출 결과와 다층퍼셉트론 신경망 및 퍼지추론 방법에 의한 결과를 비교하였으며 SVM 분류기가 비슷하거나 우수한 결과를 보였다. 또한 기존 다른 알고리즘에 비하여도 우수한 결과를 보임으로써 제안된 입력 특징을 통한 SVM 분류기 기반의 심실세동 검출이 유용함을 확인할 수 있었다.

지능형 정보시스템을 위한 개인성 학습 기법 (Personality Learning Techniques for Intelligent Information System)

  • 김호준;박정선
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.310-312
    • /
    • 2001
  • 본 연구에서는 정보시스템의 지능형 인터페이스를 위하여 사용자의 개인성을 학습하는 방법론으로서 신경망 이론의 활용가능성을 고찰한다. 입력형식의 유연성, 입력의 왜곡 및 소실가능성 등 시스템의 실용성과 연관하여 나타나는 자료의 특성을 수용하기 위하여, 학습과정에서 신호표현의 다양화와 부분 패턴의 의한 분류 기능 등을 개선한 신경망모델을 제안한다. 이를 위하여 퍼지 양방향 연상기억장치와 구간연산으로 일반화된 다층 신경망모델을 결합하여 혼합형 분류모형을 제시하고 그 유용성을 고찰한다. 실험은 전공분야 선택을 위한 개인의 적성분석시스템을 대상으로 구현하였다.

  • PDF