• Title/Summary/Keyword: 다차원 AUSMPW+ 기법

Search Result 2, Processing Time 0.016 seconds

Development of Low Dissipative AUSM-type Scheme (Low Dissipative AUSM-type 수치기법 개발)

  • Kim, Kyu-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.12-26
    • /
    • 2004
  • A new treatment of cell-interface flux in AUSM-type methods is introduced to reduce the numerical dissipation. Through analysis of TVD limiters, a criterion for the more accurate prediction of cell-interface state is found out and M-AUSMPW+ is developed by determining the transferred property newly and appropriately within the criterion. The superiority of M-AUSMPW+ is clearly revealed in multi-dimensional flow problems. It can eliminate numerical dissipation effectively in a non-flow aligned grid system. As a result, M-AUSMPW+ is shown to be much more accurate and effective than other previous schemes in multi-dimensional problems. Through a stationary contact discontinuity, a vortex flow, a shock wave/boundary layer interactions and viscous shock tube problems, it is verified that accuracy of M-AUSMPW+ is improved.

Accurate and Efficient Re-evaulation of Cell-interface Convective Fluxes (다차원 압축성 유동의 격자 경계면 대류 플럭스 계산을 위한 새로운 수치기법 연구)

  • Yoon S. H.;Kim S. S.;Kim K. H.;Kim C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.3-6
    • /
    • 2004
  • In order to reduce the excessive numerical dissipation which is induced when a grid system is not aligned with a discontinuity, a new spatial treatment of cell-interface fluxes is introduced. The M-AUSMPW+ in this paper has the formula that has an additional procedure of re-defining transferred properties at a cell-interface, based on AUSMPW+. The newly defined transferred property could eliminate numerical dissipation effectively in non-flow aligned grid system of multi-dimensional flows.

  • PDF