Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.214-216
/
2001
유사 시퀸스 검색에서 시간 왜곡 변환을 지원하기 위한 연구가 최근 활발히 이루어지고 있다. 음성 인식과 같은 몇몇 응용에서는 시간 왜곡 변환을 적용할 때 과도한 타이밍의 차이는 허용하지 않을 필요가 있다. 그래서 대부분의 경우 윈도우라는 제약 조건을 추가하게 된다. 이 논문에서는 윈도우 제약 조건이 있을 때 시간 왜곡 변환을 지원하는 유사 검색 방법으로 세그먼트 분할 기법(Segment Partition Approach:SFA)을 제안한다. SFA는 각 시퀸스를 세그먼트로 분할한 뒤 특징을 추출하여 다차원 인덱스를 구성한다. 유사 검색 질의를 수행할 때 이 인덱스를 검색하여 질의 시퀸스와 유사할 가능성이 큰 후보들을 빠르게 찾아낼 수 있고 찾아낸 후보들에 대해서만 정확한 시간 왜곡 변환 거리를 계산하기 때문에 전체 질의 처리 시간을 단축할 수 있다. SPA는 순차 검색에 비하여 좋은 성능을 보이며, 특히 거리 허용치가 작을 때 더욱 우수한 성능을 보인다.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.247-249
/
2002
최근 3D 공간 객체의 효율적인 표현을 위해, 3D 연산 및 다차원 인덱싱 기법에 관한 연구가 활발히 진행되고 있다. 또한 이러한 인덱스나 연산을 기반으로 많은 응용프로그램들이 개발되고 있다. 그러나, 대부분의 응용프로그램들은 단순히 비공간 속성에 대한 질의를 기반으로 한 3D 객체의 시각화에만 치중하고 있기 때문에, 3D 공간 객체에 관한 분석 기능을 제대로 지원하지 못하고 있다. 따라서, 이 논문에서는 3D 공간 객체에 관한 효율적 분석 기능을 제공할 수 있는 3D 공간 연산 처리기를 설계 및 구현하였다. 기존 시스템과의 상호운용을 위해서, 제안한 연산 처리기는 OpenGIS의 2차원 기하 객체 모텔을 3차원으로 확장한 3D 기하 객체 모델을 기반으로 하였다. 또한 빠른 공간 연산을 수행하기 위해 인덱스와 연동하여 구현하였다. 이 연산 처리기는 3D GIS에 적용될 경우, 효율적인 공간 분석 기능을 제공할 수 있다.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.181-183
/
2001
본 논문에서는 대용량 시퀸스 데이터베이스에서 타임 워핑을 지원하는 인텍스 기반 서브시퀸스 매칭에 관하여 논의한다. 타임 워핑은 시퀸스의 길이가 서로 다른 경우에도 유사한 패턴을 갖는 시퀸스들을 찾을 수 있도록 해 준다. 최근의 연구에서 타임 워핑을 지원하는 효과적인 전체 매칭 기법이 제안된 바 있다. 본 연구에서는 이 기존의 연구에 슬라이딩 윈도우 개념을 결합하는 새로운 기법을 제안한다. 인덱싱을 위하여, 각 슬라이딩 윈도우와 대응되는 서브시퀸스로부터 특징 벡터를 추출하고, 이 특징 벡터를 인덱싱 애트리뷰트로 사용하는 다차원 인덱스를 구성한다. 질의 처리를 위하여, 조건을 만족하는 질의 접두어들에 대한 특징 벡터들을 이용하여 인덱스 검색을 수행한다. 제안된 기법은 대용량의 데이터베이스에서도 효과적인 서브시퀸스 매칭을 지원한다. 본 연구에서는 제안된 기법이 착오 기각을 유발시키지 않음을 증명하고, 실험을 통하여 제안된 기법의 우수성을 규명한다.
Journal of Information Technology and Architecture
/
v.11
no.1
/
pp.63-73
/
2014
As the advance of WWW, unstructured data including texts are taking users' interests more and more. These unstructured data created by WWW users represent users' subjective opinions thus we can get very useful information such as users' personal tastes or perspectives from them if we analyze appropriately. In this paper, we provide various analysis efficiently for unstructured text documents by taking advantage of OLAP (On-Line Analytical Processing) multidimensional cube technology. OLAP cubes have been widely used for the multidimensional analysis for structured data such as simple alphabetic and numberic data but they didn't have used for unstructured data consisting of long texts. In order to provide multidimensional analysis for unstructured text data, however, Text Cube model has been proposed precently. It incorporates term frequency and inverted index as measurements to search and analyze text databases which play key roles in information retrieval. The primary goal of this paper is to apply this text cube model to a real data set from in an Internet site sharing hotel information and to provide multidimensional analysis for users' reviews on hotels written in texts. To achieve this goal, we first build text cubes for the hotel review data. By using the text cubes, we design and implement the system which provides multidimensional keyword search features to search and to analyze review texts on various dimensions. This system will be able to help users to get valuable guest-subjective summary information easily. Furthermore, this paper evaluats the proposed systems through various experiments and it reveals the effectiveness of the system.
Proceedings of the Korean Information Science Society Conference
/
2000.04b
/
pp.163-165
/
2000
내용기반 이미지 검색을 위한 기존의 대부분의 기법들은 이미지 데이터에 효과적으로 적용할 수 있는 고차원의 색인구조를 고려하지 않았다. 이 연구에서는 이미지 데이터베이스에서 보다 효율적이며 정확도가 높은 검색결과를 기대할 수 있는 색상 특징 데이터 표현방법인 ECCV기법, 모양 특징 데이터 표현방법인 EPA기법을 소개한다. 또한 고차원 데이터에 대해서도 검색속도를 향상시킬 수 있는 새로운 다차원 공간 인덱스 구조인 XS-트리를 제안한다. 이 방법을 이용하면 특징표현단계에서는 차원의 수가 증가되어 저장에 필요한 공간을 많이 요구하지만 인덱싱 단계를 거치면 이미지 검색 속도가 향상되며 정확한 이미지를 검색 할 수 있는 장점이 있다.
It is essential in various application areas of data mining and bioinformatics to effectively retrieve the occurrences of interesting patterns from sequence databases. For example, let's consider a network event management system that records the types and timestamp values of events occurred in a specific network component(ex. router). The typical query to find out the temporal casual relationships among the network events is as fellows: 'Find all occurrences of CiscoDCDLinkUp that are fellowed by MLMStatusUP that are subsequently followed by TCPConnectionClose, under the constraint that the interval between the first two events is not larger than 20 seconds, and the interval between the first and third events is not larger than 40 secondsTCPConnectionClose. This paper proposes an indexing method that enables to efficiently answer such a query. Unlike the previous methods that rely on inefficient sequential scan methods or data structures not easily supported by DBMSs, the proposed method uses a multi-dimensional spatial index, which is proven to be efficient both in storage and search, to find the answers quickly without false dismissals. Given a sliding window W, the input to a multi-dimensional spatial index is a n-dimensional vector whose i-th element is the interval between the first event of W and the first occurrence of the event type Ei in W. Here, n is the number of event types that can be occurred in the system of interest. The problem of‘dimensionality curse’may happen when n is large. Therefore, we use the dimension selection or event type grouping to avoid this problem. The experimental results reveal that our proposed technique can be a few orders of magnitude faster than the sequential scan and ISO-Depth index methods.hods.
Kim Woo-Cheol;Park Sang-Hyun;Won Jung-Im;Kim Sang-Wook;Yoon Jee-Hee
Journal of KIISE:Databases
/
v.32
no.3
/
pp.263-275
/
2005
In a large DNA database, indexing techniques are widely used for rapid approximate sequence searching. However, most indexing techniques require a space larger than original databases, and also suffer from difficulties in seamless integration with DBMS. In this paper, we suggest a space-efficient and disk-based indexing and query processing algorithm for approximate DNA sequence searching, specially exact match queries, wildcard match queries, and k-mismatch queries. Our indexing method places a sliding window at every possible location of a DNA sequence and extracts its signature by considering the occurrence frequency of each nucleotide. It then stores a set of signatures using a multi-dimensional index, such as R*-tree. Especially, by assigning a weight to each position of a window, it prevents signatures from being concentrated around a few spots in index space. Our query processing algorithm converts a query sequence into a multi-dimensional rectangle and searches the index for the signatures overlapped with the rectangle. The experiments with real biological data sets revealed that the proposed method is at least three times, twice, and several orders of magnitude faster than the suffix-tree-based method in exact match, wildcard match, and k- mismatch, respectively.
The nearest neighbor query is an important operation widely used in multimedia databases for finding the object that is most similar to a given object Most of techniques for processing nearest neighbor queries employ multidimensional indexes for effective indexing of objects. However, the performance of previous multidimensional indexes, which use N-dimensional rectangles or spheres for representing the capsule of the object cluster, deteriorates seriously as th number of dimensions gets higher, In this paper we first point out the fact that the simple representation of capsuler incurs performance degradation in processing nearest neighbor queries. For alleviating this problem,. we propose(1) adopting new axis systems appropriate to a given cluster (2) representing various shapes of capsules by combining rectangles and spheres, and (3) maintaining outliers separately, We also verify the superiority of our approach through performance evaluation by performing extensive experiments.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.1232-1233
/
2011
Earth mover's distance(EMD)는 내용 기반 데이터 검색을 위한 거리 함수로서 정확도가 매우 높은 검색 결과를 가져오지만, 계산 복잡도가 높아 대용량 데이터베이스에서 사용하기 어렵다. 이러한 문제를 해결하기 위한 방법으로 다차원 인덱스인 M-트리를 사용하여 데이터 비교 횟수를 크게 줄일 수 있다. 그러나 고차원의 데이터에 인덱스를 사용하면 차원의 저주 문제로 인해 검색 성능이 크게 저하될 수 있다. 본 논문에서는 이러한 문제를 정량적으로 검증하기 위하여 고차원 데이터를 대상으로 EMD 기반 M-트리를 구축한 후 다양한 실험을 수행한다. 실험 결과, 고차원 데이터에서도 차원의 저주는 일어나지 않는 것으로 나타났다. 이러한 공헌은 EMD의 검색 성능 개선을 위한 정책을 고안하는데, 중요한 실마리를 제공할 수 있을 것이다.
The latest active studies on distributed OLAP to adopt a distributed environment are mainly focused on DHT P2P OLAP and Grid OLAP. However, these approaches have its weak points, the P2P OLAP has limitations to multidimensional range queries in the cloud computing environment due to the nature of structured P2P. On the other hand, the Grid OLAP has no regard for adjacency and time series. It focused on its own sub set lookup algorithm. To overcome the above limits, this paper proposes an efficient central managed P2P approach for a cloud computing environment. When a multi-level hybrid P2P method is combined with an index load distribution scheme, the performance of a multi-dimensional range query is enhanced. The proposed scheme makes the OLAP query results of a user to be able to reused by other users' volatile cube search. For this purpose, this paper examines the combination of an aggregation cube hierarchy tree, a quad-tree, and an interval-tree as an efficient index structure. As a result, the proposed cloud P2P OLAP scheme can manage the adjacency and time series factor of an OLAP query. The performance of the proposed scheme is analyzed by a series of experiments to identify its various characteristics.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.