• Title/Summary/Keyword: 다중-경로 라우팅

Search Result 234, Processing Time 0.02 seconds

Mobility-Aware Service Migration (MASM) Algorithms for Multi-Access Edge Computing (멀티 액세스 엣지 컴퓨팅을 위한 Mobility-Aware Service Migration (MASM) 알고리즘)

  • Hamzah, Haziq;Le, Duc-Tai;Kim, Moonseong;Choo, Hyunseung
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • In order to reach Ultra-Reliable Low-Latency communication, one of 5G aims, Multi-access Edge Computing paradigm was born. The idea of this paradigm is to bring cloud computing technologies closer to the network edge. User services are hosted in multiple Edge Clouds, deployed at the edge of the network distributedly, to reduce the service latency. For mobile users, migrating their services to the most proper Edge Clouds for maintaining a Quality of Service is a non-convex problem. The service migration problem becomes more complex in high mobility scenarios. The goal of the study is to observe how user mobility affects the selection of Edge Cloud during a fixed mobility path. Mobility-Aware Service Migration (MASM) is proposed to optimize service migration based on two main parameters: routing cost and service migration cost, during a high mobility scenario. The performance of the proposed algorithm is compared with an existing greedy algorithm.

(A Scalable Multipoint-to-Multipoint Routing Protocol in Ad-Hoc Networks) (애드-혹 네트워크에서의 확장성 있는 다중점 대 다중점 라우팅 프로토콜)

  • 강현정;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.329-342
    • /
    • 2003
  • Most of the existing multicast routing protocols for ad-hoc networks do not take into account the efficiency of the protocol for the cases when there are large number of sources in the multicast group, resulting in either large overhead or poor data delivery ratio when the number of sources is large. In this paper, we propose a multicast routing protocol for ad-hoc networks, which particularly considers the scalability of the protocol in terms of the number of sources in the multicast groups. The proposed protocol designates a set of sources as the core sources. Each core source is a root of each tree that reaches all the destinations of the multicast group. The union of these trees constitutes the data delivery mesh, and each of the non-core sources finds the nearest core source in order to delegate its data delivery. For the efficient operation of the proposed protocol, it is important to have an appropriate number of core sources. Having too many of the core sources incurs excessive control and data packet overhead, whereas having too little of them results in a vulnerable and overloaded data delivery mesh. The data delivery mesh is optimally reconfigured through the periodic control message flooding from the core sources, whereas the connectivity of the mesh is maintained by a persistent local mesh recovery mechanism. The simulation results show that the proposed protocol achieves an efficient multicast communication with high data delivery ratio and low communication overhead compared with the other existing multicast routing protocols when there are multiple sources in the multicast group.

Design and Performance Evaluation of a 3-Dimensional Nonblocking Copy Network for Multicast ATM Switches (ATM 멀티캐스트 스위치를 위한 3차원 논블럭킹 복사망의 설계 및 성능평가)

  • 신재구;손유익
    • Journal of KIISE:Information Networking
    • /
    • v.29 no.6
    • /
    • pp.696-705
    • /
    • 2002
  • This paper presents a new copy network for multicast ATM switches. Many studies have been carried out up to date since the proposition of Lee's copy network. However, the overflows and cell conflicts within the switch have still been raised a problem in argument. In order to reduce those problems, we proposed a 3-dimensional multicast switching architecture which has shared buffers in this paper. The proposed architecture can reduce the overflows and cell conflicts through multiple paths and output ports even in the high load environments. Also, we proposed a cell splitting algorithm which handles the cell in the case of large fan-out, and a copy network to increase throughput by expanding the Lee's Broadcast Banyan Network(BBN). Cell copy uses the Boolean interval splitting algorithm and the multicast pattern of the cells according to the self-routing characteristics of the network. In the proposed copy network, we improve the problems such as overflow, cell splitting of large fanout, cell conflicts, etc., which were still existed in the Lee's network. The results of performance evaluation by computer simulation show that the proposed scheme has better throughput, cell loss rate and cell delay than the conventional method.

An Energy Efficient Unequal Clustering Algorithm for Wireless Sensor Networks (무선 센서 네트워크에서의 에너지 효율적인 불균형 클러스터링 알고리즘)

  • Lee, Sung-Ju;Kim, Sung-Chun
    • The KIPS Transactions:PartC
    • /
    • v.16C no.6
    • /
    • pp.783-790
    • /
    • 2009
  • The necessity of wireless sensor networks is increasing in the recent years. So many researches are studied in wireless sensor networks. The clustering algorithm provides an effective way to prolong the lifetime of the wireless sensor networks. The one-hop routing of LEACH algorithm is an inefficient way in the energy consumption of cluster-head, because it transmits a data to the BS(Base Station) with one-hop. On the other hand, other clustering algorithms transmit data to the BS with multi-hop, because the multi-hop transmission is an effective way. But the multi-hop routing of other clustering algorithms which transmits data to BS with multi-hop have a data bottleneck state problem. The unequal clustering algorithm solved a data bottleneck state problem by increasing the routing path. Most of the unequal clustering algorithms partition the nodes into clusters of unequal size, and clusters closer to the BS have small-size the those farther away from the BS. However, the energy consumption of cluster-head in unequal clustering algorithm is more increased than other clustering algorithms. In the thesis, I propose an energy efficient unequal clustering algorithm which decreases the energy consumption of cluster-head and solves the data bottleneck state problem. The basic idea is divided a three part. First of all I provide that the election of appropriate cluster-head. Next, I offer that the decision of cluster-size which consider the distance from the BS, the energy state of node and the number of neighborhood node. Finally, I provide that the election of assistant node which the transmit function substituted for cluster-head. As a result, the energy consumption of cluster-head is minimized, and the energy consumption of total network is minimized.