• Title/Summary/Keyword: 다중 해상도

Search Result 577, Processing Time 0.027 seconds

A Study on 3D Scan Technology for Find Archetype of Youngbeokji in Seongnagwon Garden (성락원 영벽지의 원형 파악을 위한 3D 스캔기술 연구)

  • Lee, Won-Ho;Kim, Dong-Hyun;Kim, Jae-Ung;Park, Dong-Jin
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.31 no.3
    • /
    • pp.95-105
    • /
    • 2013
  • This study on circular identifying purposes was performed of Youngbeokji space located in Seongnagwon(Scenic Sites No.35). Through the data acquisition of 3D high precision, such as the surrounding terrain of the Youngbeokji. The results of this study is summarized like the following. First, the purpose of the stone structures and structure within the Youngbeokji search is an important clue to find that earlier era will be a prototype. 3D scan method of enforcement is searching the whole structure, including the surrounding terrain and having the easy way. Second, the measurement results are as follows. Department of bedrock surveyed from South to North was measured by 7,665mm. From East to West was measured at 7,326mm. The size of the stone structures, $1,665mm{\times}1,721mm$ in the form of a square. Its interior has a diameter of 1, 664mm of hemispherical form. In the lower portion of the rock masses in the South to the North, has fallen out of the $1,006mm{\times}328mm$ scale traces were discovered. Third, the Youngbeokji recorded in the internal terrain Multiresolution approach. After working with the scanner and scan using the scan data, broadband, to merge. Polygon Data conversion to process was conducted and mash as fine scan data are converted to process data. High resolution photos obtained through the creation of 3D terrain data overlap and the final result. Fourthly, as a result of this action, stone structure West of the waterway back outgoing times oil was confirmed. Bangjiwondo is estimated to be seokji of structure hydroponic facility confirmed will artificially carved in the bedrock. As a result of this and the previous situation of the 1960s could compare data was created. This study provides 3D precision ordnance through the acquisition of the data. Excavations at the circle was able to preserve in perpetuity as digital data. In the future, this data is welcome to take a wide variety of professionals. This is the purpose of this is to establish foundations and conservation management measures will be used. In addition, The new ease of how future research and 3D scan unveiled in the garden has been used in the study expect.

Effectiveness of MDCT for the Followup of CABG Patients with LIMA to LAD and Saphenous Veins to Others (좌내흉동맥과 복재정맥편을 사용한 관상동맥우회로술 환자에서의 추적조사에서 MDCT의 유용성)

  • Kang Joon Kyu;Kim Hyung Tai;Park In Duk;Chung Young Mi;Lee Cheol Joo
    • Journal of Chest Surgery
    • /
    • v.38 no.6 s.251
    • /
    • pp.410-414
    • /
    • 2005
  • There are several options for choosing a graft in CABG, we routinely chose LIMA for LAD and great saphenous vein for other target vessels. To evaluate the posoperative graft patency, we have studied the results using a 16 slices multi-detector computed tomography. Material and Method: From 1995 to 2003, 80 CABG patients who did not complain any event of MACE have been examined by 16-MDCT, mostly in an out patient clinic. Result: There were 61 men and 19 women. MDCT was used as early as 7 days to 9 years post-operatively with a median follow-up period of 6.5 years, and mean follow-up peiod of $31.5\pm25.4$ months. Mean age was $58.4\pm12.6$ years old in men and $61.5\pm17.2$ years old in women. 72180 patients received LIMA to LAD, and all other patients received vein grafts for bypass. The target vessel of vein grafts were 8 in LAD, 47 in RCA, 60 in diagonals, and 61 in obtuse marginals. Among them 42 sequential anastomoses were performed. The mean graft number was $3.1\pm1.8$ grafts. 5 year graft patency rate of each grafts was as followings; $93.1\%$ in LIMA to LAD, $94.9\%$ in vein to diagonals, $92.1\%$ in vein to obtuse marginals, and $79.2\%$ in vein to RCA. Sequential grafting showed better graft patency than the isolated grafting $(95.2\%\;vs\;78.7\~95.0\%)$. Conclusion: In this study, CABG with LIMA and saphenous veins showed satisfactory longterm results. 16-MDCT provided good images for follow-up study after CABG. Additionally, as radiologic tools (64-MDCT, MRI) improve more in the future, they can be used for diagnosing preoperative anatomical coronary disease as well as cardiac functions.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Simulation of Sentinel-2 Product Using Airborne Hyperspectral Image and Analysis of TOA and BOA Reflectance for Evaluation of Sen2cor Atmosphere Correction: Focused on Agricultural Land (Sen2Cor 대기보정 프로세서 평가를 위한 항공 초분광영상 기반 Sentinel-2 모의영상 생성 및 TOA와 BOA 반사율 자료와의 비교: 농업지역을 중심으로)

  • Cho, Kangjoon;Kim, Yongil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.251-263
    • /
    • 2019
  • Sentinel-2 Multi Spectral Instrument(MSI) launched by the European Space Agency (ESA) offered high spatial resolution optical products, enhanced temporal revisit of five days, and 13 spectral bands in the visible, near infrared and shortwave infrared wavelengths similar to Landsat mission. Landsat satellite imagery has been applied to various previous studies, but Sentinel-2 optical satellite imagery has not been widely used. Currently, for global coverage, Sentinel-2 products are systematically processed and distributed to Level-1C (L1C) products which contain the Top-of-Atmosphere (TOA) reflectance. Furthermore, ESA plans a systematic global production of Level-2A(L2A) product including the atmospheric corrected Bottom-of-Atmosphere (BOA) reflectance considered the aerosol optical thickness and the water vapor content. Therefore, the Sentinel-2 L2A products are expected to enhance the reliability of image quality for overall coverage in the Sentinel-2 mission with enhanced spatial,spectral, and temporal resolution. The purpose of this work is a quantitative comparison Sentinel-2 L2A products and fully simulated image to evaluate the applicability of the Sentinel-2 dataset in cultivated land growing various kinds of crops in Korea. Reference image of Sentinel-2 L2A data was simulated by airborne hyperspectral data acquired from AISA Fenix sensor. The simulation imagery was compared with the reflectance of L1C TOA and that of L2A BOA data. The result of quantitative comparison shows that, for the atmospherically corrected L2A reflectance, the decrease in RMSE and the increase in correlation coefficient were found at the visible band and vegetation indices to be significant.

Modeling of Vegetation Phenology Using MODIS and ASOS Data (MODIS와 ASOS 자료를 이용한 식물계절 모델링)

  • Kim, Geunah;Youn, Youjeong;Kang, Jonggu;Choi, Soyeon;Park, Ganghyun;Chun, Junghwa;Jang, Keunchang;Won, Myoungsoo;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.627-646
    • /
    • 2022
  • Recently, the seriousness of climate change-related problems caused by global warming is growing, and the average temperature is also rising. As a result, it is affecting the environment in which various temperature-sensitive creatures and creatures live, and changes in the ecosystem are also being detected. Seasons are one of the important factors influencing the types, distribution, and growth characteristics of creatures living in the area. Among the most popular and easily recognized plant seasonal phenomena among the indicators of the climate change impact evaluation, the blooming day of flower and the peak day of autumn leaves were modeled. The types of plants used in the modeling were forsythia and cherry trees, which can be seen as representative plants of spring, and maple and ginkgo, which can be seen as representative plants of autumn. Weather data used to perform modeling were temperature, precipitation, and solar radiation observed through the ASOS Observatory of the Korea Meteorological Administration. As satellite data, MODIS NDVI was used for modeling, and it has a correlation coefficient of about -0.2 for the flowering date and 0.3 for the autumn leaves peak date. As the model used, the model was established using multiple regression models, which are linear models, and Random Forest, which are nonlinear models. In addition, the predicted values estimated by each model were expressed as isopleth maps using spatial interpolation techniques to express the trend of plant seasonal changes from 2003 to 2020. It is believed that using NDVI with high spatio-temporal resolution in the future will increase the accuracy of plant phenology modeling.

Real data-based active sonar signal synthesis method (실데이터 기반 능동 소나 신호 합성 방법론)

  • Yunsu Kim;Juho Kim;Jongwon Seok;Jungpyo Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • The importance of active sonar systems is emerging due to the quietness of underwater targets and the increase in ambient noise due to the increase in maritime traffic. However, the low signal-to-noise ratio of the echo signal due to multipath propagation of the signal, various clutter, ambient noise and reverberation makes it difficult to identify underwater targets using active sonar. Attempts have been made to apply data-based methods such as machine learning or deep learning to improve the performance of underwater target recognition systems, but it is difficult to collect enough data for training due to the nature of sonar datasets. Methods based on mathematical modeling have been mainly used to compensate for insufficient active sonar data. However, methodologies based on mathematical modeling have limitations in accurately simulating complex underwater phenomena. Therefore, in this paper, we propose a sonar signal synthesis method based on a deep neural network. In order to apply the neural network model to the field of sonar signal synthesis, the proposed method appropriately corrects the attention-based encoder and decoder to the sonar signal, which is the main module of the Tacotron model mainly used in the field of speech synthesis. It is possible to synthesize a signal more similar to the actual signal by training the proposed model using the dataset collected by arranging a simulated target in an actual marine environment. In order to verify the performance of the proposed method, Perceptual evaluation of audio quality test was conducted and within score difference -2.3 was shown compared to actual signal in a total of four different environments. These results prove that the active sonar signal generated by the proposed method approximates the actual signal.

A Study on Object-Based Image Analysis Methods for Land Cover Classification in Agricultural Areas (농촌지역 토지피복분류를 위한 객체기반 영상분석기법 연구)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.26-41
    • /
    • 2012
  • It is necessary to manage, forecast and prepare agricultural production based on accurate and up-to-date information in order to cope with the climate change and its impacts such as global warming, floods and droughts. This study examined the applicability as well as challenges of the object-based image analysis method for developing a land cover image classification algorithm, which can support the fast thematic mapping of wide agricultural areas on a regional scale. In order to test the applicability of RapidEye's multi-temporal spectral information for differentiating agricultural land cover types, the integration of other GIS data was minimized. Under this circumstance, the land cover classification accuracy at the study area of Kimje ($1300km^2$) was 80.3%. The geometric resolution of RapidEye, 6.5m showed the possibility to derive the spatial features of agricultural land use generally cultivated on a small scale in Korea. The object-based image analysis method can realize the expert knowledge in various ways during the classification process, so that the application of spectral image information can be optimized. An additional advantage is that the already developed classification algorithm can be stored, edited with variables in detail with regard to analytical purpose, and may be applied to other images as well as other regions. However, the segmentation process, which is fundamental for the object-based image classification, often cannot be explained quantitatively. Therefore, it is necessary to draw the best results based on expert's empirical and scientific knowledge.

Evaluation of Spatio-temporal Fusion Models of Multi-sensor High-resolution Satellite Images for Crop Monitoring: An Experiment on the Fusion of Sentinel-2 and RapidEye Images (작물 모니터링을 위한 다중 센서 고해상도 위성영상의 시공간 융합 모델의 평가: Sentinel-2 및 RapidEye 영상 융합 실험)

  • Park, Soyeon;Kim, Yeseul;Na, Sang-Il;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_1
    • /
    • pp.807-821
    • /
    • 2020
  • The objective of this study is to evaluate the applicability of representative spatio-temporal fusion models developed for the fusion of mid- and low-resolution satellite images in order to construct a set of time-series high-resolution images for crop monitoring. Particularly, the effects of the characteristics of input image pairs on the prediction performance are investigated by considering the principle of spatio-temporal fusion. An experiment on the fusion of multi-temporal Sentinel-2 and RapidEye images in agricultural fields was conducted to evaluate the prediction performance. Three representative fusion models, including Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), SParse-representation-based SpatioTemporal reflectance Fusion Model (SPSTFM), and Flexible Spatiotemporal DAta Fusion (FSDAF), were applied to this comparative experiment. The three spatio-temporal fusion models exhibited different prediction performance in terms of prediction errors and spatial similarity. However, regardless of the model types, the correlation between coarse resolution images acquired on the pair dates and the prediction date was more significant than the difference between the pair dates and the prediction date to improve the prediction performance. In addition, using vegetation index as input for spatio-temporal fusion showed better prediction performance by alleviating error propagation problems, compared with using fused reflectance values in the calculation of vegetation index. These experimental results can be used as basic information for both the selection of optimal image pairs and input types, and the development of an advanced model in spatio-temporal fusion for crop monitoring.

A Numerical Simulation of Hydrodynamic Interactions Between Two Moored Barges with Regular Waves (규칙파 중 계류된 두 바지선의 유체역학적 상호작용에 관한 수치시뮬레이션)

  • Lee, Sang-Do;Bae, Byung-Deug;Kim, Dae-Hae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.615-624
    • /
    • 2016
  • In this study, two rectangular barges in close proximity were simulated to analyze the characteristics of motion responses due to hydrodynamic interactions. Using a numerical solution from DNV-GL SESAM, coupled stiffness matrix terms for these same FEM models were added to the multiple body modes in the surge direction. Potential theory was used to calculate the first order radiation and diffraction effects on the simulated barge models. In the results, the sheltering effect of the barges was not shown at 1.3 rad/s with hull separation of 20 m in transverse waves. The separation effect between the barges was more clear with longitudinal waves and a shallow water depth. However, sway forces were influenced by hull separation with transverse waves. The peaks for sway and heave motion and sway force occurred at higher frequencies as hull separation narrowed with longitudinal and transverse waves. Given a depth of 10 m, the sway motion on the lee side of a coupled barge made a significant difference in the range of 0.2-0.8 rad/s with transverse and oblique waves. Also, the peaks for sway force were situated at lower frequencies, even when incident waves changed.

A Design of N-Screen based Monitoring System for Marine-Facility (N-Screen 기반의 해양시설물용 모니터링 시스템 설계)

  • Kim, Ji-Yoon;Oh, Jin-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.613-622
    • /
    • 2015
  • The convergence of IT technology and marine facilities monitoring system is needed for effective monitoring systems to marine facilities. Especially the spread of smart device such as smart phone, smart pad, smart TV provide an environment that can check the status of the marine facility for marin facilities manager. However, smart phones and smart pads are used in a variety of OS used. Thus the monitoring system of the various service environments is difficult. In addition, There is inconvenience that must individually developed monitoring system for each device. In order to solve this problem NMMS (N-Screen Marine-facility Monitoring System) is proposed. NMMS is consist of Real-time monitoring system, Fault diagnosis system, Data storage system. To improve variety of smart devices accessibility, we use HTML 5. Through NMMS, marine facilities manager can use smart device such as PC, Notebook, smart phone, smart pad for marine facilities monitoring.