• Title/Summary/Keyword: 다중 패킷 블레이드 계

Search Result 6, Processing Time 0.025 seconds

Modal Analysis of a Rotating Multi-Packet Pre-twisted Blade System (초기 비틀림각을 갖는 회전하는 다중 패킷 블레이드 시스템의 고유 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.393-399
    • /
    • 2008
  • A modeling method for the modal analysis of a pre-twisted multi-packet blade system undergoing rotational motion is presented in this paper. Blades are idealized as pre-twisted cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. The coupling effect between chordwise and flapwise bending deflection is also considered. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters and the number of packets as well as blades on the modal characteristics of the rotating multi-packet pre-twisted blade system are investigated with some numerical examples.

  • PDF

Vibration Analysis of a Rotating Multi-Packet Blade System Having Tapered Cross Section (회전하는 테이퍼 단면 다중 패킷 블레이드 시스템의 진동 해석)

  • Kim, Min-Kwon;Yoo, Hong-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.832-837
    • /
    • 2008
  • A modeling method for the modal analysis of a multi-packet blade system having tapered cross section undergoing rotational motion is presented in this paper. Blades are idealized as tapered cantilever beams that are fixed to a rotating disc. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters including tapered ratio and the number of packets as well as blades on the modal characteristics of the system are investigated with some numerical examples.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.57-62
    • /
    • 2007
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

  • PDF

Transient Vibration Analysis of a Multi-packet Blade System Excited by Nozzle Jet Forces (노즐 분사력에 의해 가진되는 다중 패킷 블레이드계의 과도 진동 해석)

  • Lim, Ha-Seong;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.7
    • /
    • pp.711-717
    • /
    • 2008
  • A modeling method for the modal and the transient vibration analysis of a multi-packet blade system excited by nozzle jet forces is presented in this paper. Blades are idealized as cantilever beams and the elastic structures like disc and shroud connecting blades are modeled as coupling stiffnesses. A modified Campbell diagram is proposed to identify true resonance frequencies of the multi-packet blade system. Different from the SAFE diagram that employs three dimensional space, the modified Campbell diagram Proposed in this study employs a plane to find the true resonance frequencies. To verify the existence of true resonance frequencies, nozzle jet forces are modeled as periodic forces and transient vibration analysis were performed with the modeling method.

Modal Analysis of a Rotating Packet Blade System having a Crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.12
    • /
    • pp.1244-1251
    • /
    • 2009
  • In this paper the vibrational behavior of a multi-packet blade system having a cracked blade is investigated. Each blade is assumed as a slender cantilever beam. The coupling stiffness effect that originates from either disc flexibility or shroud is considered in the modeling. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. In the paper, the results of the change in modal parameters due to crack appearance are presented. The influence of the crack parameters, especially of the changing location of the crack is examined.

Modal Analysis of a Rotating Packet Blade System having a crack (한 개의 크랙을 가진 회전하는 패킷 블레이드 시스템의 진동해석)

  • Kwon, Seung-Min;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.266-271
    • /
    • 2009
  • A modeling method for the modal analysis of a multi-packet blade system having a crack undergoing rotational motion is presented in this paper. Each blade is assumed as a slender cantilever beam. The stiffness coupling effects between blades due to the flexibilities of the disc and the shroud are modeled with discrete springs. Hybrid deformation variables are employed to derive the equations of motion. The flexibility due to crack, which is assumed to be open during the vibration, is calculated basing on a fracture mechanics theory. To obtain more general information, the equations of motion are transformed into dimensionless forms in which dimensionless parameters are identified. The effects of the dimensionless parameters related to the angular speed, the depth and location of a crack on the modal characteristics of the system are investigated with some numerical examples.

  • PDF