• Title/Summary/Keyword: 다중 신호 분류

Search Result 97, Processing Time 0.019 seconds

EMD based Cardiac Arrhythmia Classification using Multi-class SVM (다중 클래스 SVM을 이용한 EMD 기반의 부정맥 신호 분류)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.16-22
    • /
    • 2010
  • Electrocardiogram(ECG) analysis and arrhythmia recognition are critical for diagnosis and treatment of ill patients. Cardiac arrhythmia is a condition in which heart beat may be irregular and presents a serious threat to the patient recovering from ventricular tachycardia (VT) and ventricular fibrillation (VF). Other arrhythmias like atrial premature contraction (APC), Premature ventricular contraction (PVC) and superventricular tachycardia (SVT) are important in diagnosing the heart diseases. This paper presented new method to classify various arrhythmias contrary to other techniques which are limited to only two or three arrhythmias. ECG is decomposed into Intrinsic Mode Functions (IMFs) by Empirical Mode Decomposition (EMD). Burg algorithm was performed on IMFs to obtain AR coefficients which can reduce the dimension of feature vector and utilized as Multi-class SVM inputs which is basically extended from binary SVM. We chose optimal parameters for SVM classifier, applied to arrhythmias classification and achieved the accuracies of detecting NSR, APC, PVC, SVT, VT and VP were 96.8% to 99.5%. The results showed that EMD was useful for the preprocessing and feature extraction and multi-class SVM for classification of cardiac arrhythmias, with high usefulness.

Separating Signals and Noises Using Mixture Model and Multiple Testing (혼합모델 및 다중 가설 검정을 이용한 신호와 잡음의 분류)

  • Park, Hae-Sang;Yoo, Si-Won;Jun, Chi-Hyuck
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.4
    • /
    • pp.759-770
    • /
    • 2009
  • A problem of separating signals from noises is considered, when they are randomly mixed in the observation. It is assumed that the noise follows a Gaussian distribution and the signal follows a Gamma distribution, thus the underlying distribution of an observation will be a mixture of Gaussian and Gamma distributions. The parameters of the mixture model will be estimated from the EM algorithm. Then the signals and noises will be classified by a fixed threshold approach based on multiple testing using positive false discovery rate and Bayes error. The proposed method is applied to a real optical emission spectroscopy data for the quantitative analysis of inclusions. A simulation is carried out to compare the performance with the existing method using 3 sigma rule.

A Study on the speech synthesis-by-rue system using Multiband Excitation signal (다중대역 여기신호를 이용한 음성의 규칙합성에 관한 연구)

  • 경연정
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.80-83
    • /
    • 1993
  • 본 논문에서는 양질의 규칙합성을 얻기 위하여, 유성음에 대한 여기신호로 임펄스 스펙트럼과 노이즈 스펙트럼을 다중대역으로 혼합하여 생성한 여기신호를 규칙합성에 적용하는 방법을 제안한다. 이 방법에서는, 분석합성에서 각 프레임별로 요구되었던 혼합여기신호에 대한 정보량 문제를 해결하기 위해 유성음의 정상부분의 한 프레임에 대해 혼합여기신호를 구하여 규칙합성에 적용하였고, 정보량을 더욱 줄이는 방안으로, 켑스트럼 유클리디안 거리를 이용하여 유성음을 분류하여, 각 그룹에 대한 대표 여기신호를 규칙합성의 여기신호로 사용하였다. 제안된 방법으로 음성을 합성한 결과 양질의 합성음을 얻을 수 있음을 확인하였다.

  • PDF

Multi-site based earthquake event classification using graph convolution networks (그래프 합성곱 신경망을 이용한 다중 관측소 기반 지진 이벤트 분류)

  • Kim, Gwantae;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.6
    • /
    • pp.615-621
    • /
    • 2020
  • In this paper, we propose a multi-site based earthquake event classification method using graph convolution networks. In the traditional earthquake event classification methods using deep learning, they used single-site observation to estimate seismic event class. However, to achieve robust and accurate earthquake event classification on the seismic observation network, the method using the information from the multi-site observations is needed, instead of using only single-site data. Firstly, our proposed model employs convolution neural networks to extract informative embedding features from the single-site observation. Secondly, graph convolution networks are used to integrate the features from several stations. To evaluate our model, we explore the model structure and the number of stations for ablation study. Finally, our multi-site based model outperforms up to 10 % accuracy and event recall rate compared to single-site based model.

Performance of an ML Modulation Classification of QAM Signals with Single-Sample Observation (단일표본관측을 이용한 직교진폭변조 신호의 치운 변조분류 성능)

  • Kang Seog Geun
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.63-68
    • /
    • 2005
  • In this paper, performance of a maximum-likelihood modulation classification for quadrature amplitude modulation (QAM) is studied. Unlike previous works, the relative classification performance with respect to the available modulations and performance limit with single-sample observation are presented. For those purposes, all constellations are set to have the same minimum Euclidean distance between symbols so that a smaller constellation is a subset of the larger ones. And only one sample of received waveform is used for multiple hypothesis test. As a result, classification performance is improved with increase in signal-to-noise ratio in all the experiments. Especially, when the true modulation format used in the transmitter is 4 QAM, almost perfect classification can be achieved without any additional information or observation samples. Though the possibility of false classification due to the symbols shared by subset constellations always exists, correct classification ratio of $80{\%}$ can be obtained with the single-sample observation when the true modulation formats are 16 and 64 QAM.

Voice Personality Transformation Using a Multiple Response Classification and Regression Tree (다중 응답 분류회귀트리를 이용한 음성 개성 변환)

  • 이기승
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • In this paper, a new voice personality transformation method is proposed. which modifies speaker-dependent feature variables in the speech signals. The proposed method takes the cepstrum vectors and pitch as the transformation paremeters, which represent vocal tract transfer function and excitation signals, respectively. To transform these parameters, a multiple response classification and regression tree (MR-CART) is employed. MR-CART is the vector extended version of a conventional CART, whose response is given by the vector form. We evaluated the performance of the proposed method by comparing with a previously proposed codebook mapping method. We also quantitatively analyzed the performance of voice transformation and the complexities according to various observations. From the experimental results for 4 speakers, the proposed method objectively outperforms a conventional codebook mapping method. and we also observed that the transformed speech sounds closer to target speech.

Earthquake detection based on convolutional neural network using multi-band frequency signals (다중 주파수 대역 convolutional neural network 기반 지진 신호 검출 기법)

  • Kim, Seung-Il;Kim, Dong-Hyun;Shin, Hyun-Hak;Ku, Bonhwa;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.23-29
    • /
    • 2019
  • In this paper, a deep learning-based detection and classification using multi-band frequency signals is presented for detecting earthquakes prevalent in Korea. Based on an analysis of the previous earthquakes in Korea, it is observed that multi-band signals are appropriate for classifying earthquake signals. Therefore, in this paper, we propose a deep CNN (Convolutional Neural Network) using multi-band signals as training data. The proposed algorithm extracts the multi-band signals (Low/Medium/High frequency) by applying band pass filters to mel-spectrum of earthquake signals. Then, we construct three CNN architecture pipelines for extracting features and classifying the earthquake signals by a late fusion of the three CNNs. We validate effectiveness of the proposed method by performing various experiments for classifying the domestic earthquake signals detected in 2018.

Analysis and Classification of Acoustic Emission Signals During Wood Drying Using the Principal Component Analysis (주성분 분석을 이용한 목재 건조 중 발생하는 음향방출 신호의 해석 및 분류)

  • Kang, Ho-Yang;Kim, Ki-Bok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.3
    • /
    • pp.254-262
    • /
    • 2003
  • In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters.

Direction-of-Arrival Estimation of Speech Signals Based on MUSIC and Reverberation Component Reduction (MUSIC 및 반향 성분 제거 기법을 이용한 음성신호의 입사각 추정)

  • Chang, Hyungwook;Jeong, Sangbae;Kim, Youngil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1302-1309
    • /
    • 2014
  • In this paper, we propose a method to improve the performance of the direction-of-arrival (DOA) estimation of a speech source using a multiple signal classification (MUSIC)-based algorithm. Basically, the proposed algorithm utilizes a complex coefficient band pass filter to generate the narrow band signals for signal analysis. Also, reverberation component reduction and quadratic function-based response approximation in MUSIC spatial spectrum are utilized to improve the accuracy of DOA estimation. Experimental results show that the proposed method outperforms the well-known generalized cross-correlation (GCC)-based DOA estimation algorithm in the aspect of the estimation error and success rate, respectively.Abstract should be placed here. These instructions give you guidelines for preparing papers for JICCE.

Digital Modulation Types Recognition using HOS and WT in Multipath Fading Environments (다중경로 페이딩 환경에서 HOS와 WT을 이용한 디지털 변조형태 인식)

  • Park, Cheol-Sun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.5
    • /
    • pp.102-109
    • /
    • 2008
  • In this paper, the robust hybrid modulation type classifier which use both HOS and WT key features and can recognize 10 digitally modulated signals without a priori information in multipath fading channel conditions is proposed. The proposed classifier developed using data taken field measurements in various propagation model (i,e., rural area, small town and urban area) for real world scenarios. The 9 channel data are used for supervised training and the 6 channel data are used for testing among total 15 channel data(i.e., holdout-like method). The Proposed classifier is based on HOS key features because they are relatively robust to signal distortion in AWGN and multipath environments, and combined WT key features for classifying MQAM(M=16, 64, 256) signals which are difficult to classify without equalization scheme such as AMA(Alphabet Matched Algorithm) or MMA(Multi-modulus Algorithm. To investigate the performance of proposed classifier, these selected key features are applied in SVM(Support Vector Machine) which is known to having good capability of classifying because of mapping input space to hyperspace for margin maximization. The Pcc(Probability of correct classification) of the proposed classifier shows higher than those of classifiers using only HOS or WT key features in both training channels and testing channels. Especially, the Pccs of MQAM 3re almost perfect in various SNR levels.