• Title/Summary/Keyword: 다중 사용자 MIMO

Search Result 174, Processing Time 0.027 seconds

MIMO Channel Diagonalization: Linear Detection ZF, MMSE (MIMO 채널 대각화: 선형 검출 ZF, MMSE)

  • Yang, Jae Seung;Shin, Tae Chol;Lee, Moon Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • Compared to the MIMO system using the spatial multiplexing methods and the MIMO system using the diversity scheme achieved a high rate, but the lower the diversity gain to improve the data transmission reliability should separate the spatial stream at the MIMO receiver. In this paper, we compared Channel capacity detection methods with the Lattice code, the 3-user interference channel and linear channel interference detection methods ZF (Zero Forcing) and MMSE (Minimum Mean Square Error) detection methods. The channel is a Diagonal channel. In other words, Diagonal channel is confirmed by the inverse matrix satisfies the properties of Jacket are element-wise inverse to $[H]_N[H]_N^{-1}=[I]_N$.

Lattice-Reduction-Aided Preceding Using Seysen's Algorithm for Multi-User MIMO Systems (다중 사용자 다중 입출력 시스템에서 Seysen 기법을 이용한 격자 감소 기반 전부호화 기법)

  • Song, Hyung-Joon;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.6
    • /
    • pp.86-93
    • /
    • 2009
  • We investigate lattice-reduction-aided precoding techniques for multi-user multiple-input multiple-output (MIMO) channels. When assuming full knowledge of the channel state information only at the transmitter, a vector perturbation (VP) is a promising precoding scheme that approaches sum capacity and has simple receiver. However, its encoding is nondeterministic polynomial time (NP)-hard problem. Vector perturbation using lattice reduction algorithms can remarkably reduce its encoding complexity. In this paper, we propose a vector perturbation scheme using Seysen's lattice reduction (VP-SLR) with simultaneously reducing primal basis and dual one. Simulation results show that the proposed VP-SLR has better bit error rate (BER) and larger capacity than vector perturbation with Lenstra-Lenstra-Lovasz lattice reduction (VP-LLL) in addition to less encoding complexity.

The Optimal Number of Transmit Antennas Maximizing Energy Efficiency in Multi-user Massive MIMO Downlink System with MRT Precoding (MU-MIMO 하향링크 시스템에서의 MRT 기법 사용 시 에너지 효율을 최대화하는 최적 송신 안테나의 수)

  • Lee, Jeongsu;Han, Yonggue;Lee, Chungyong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.11
    • /
    • pp.33-39
    • /
    • 2014
  • We propose an optimal number of transmit antennas which maximizes energy-efficiency (EE) in multi-user massive multiple-input multiple-output (MIMO) downlink system with the maximal ratio transmission (MRT) precoding. With full channel state information at the transmitter (CSIT), we find a closed form solution by partial differential function with proper approximations using average channel gain, independence of individual channels, and average path loss. With limited feedback, we get a solution numerically by the bisection with approximations in the same manner, and analyze an effect of feedback bits on the optimal number of transmit antennas. Simulation results show that the optimal numbers of transmit antenna getting from proposed closed form solution and exhaustive search are nearly same.

Energy Efficient Transmit Antenna Selection Scheme in Multi-User Massive MIMO Networks (Multi-User Massive MIMO 네트워크에서 에너지 효율적인 전송 안테나 선택 기법)

  • Jeong, Moo-Woong;Ban, Tae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1249-1254
    • /
    • 2016
  • Recently, there have been many researches which can achieve high data rate in multi-user massive MIMO networks while reducing the complexity in terms of both hardware and algorithm. In addition, many researches have been conduced to reduce the energy consumption in next generation mobile communication networks. In this paper, we thus investigated new transmit antenna selection scheme to achieve low computational complexity and enhance energy efficiency in multi-user massive MIMO networks. First, we introduced the optimal scheme based on Brute-Force searching to maximize the energy efficiency and then proposed new antenna selection scheme to dramatically reduce the computational complexity compared to the optimal scheme. As the number of transmit antennas increases, the complexity of the optimal scheme exponentially increases while the complexity of the proposed scheme linearly increases. Nevertheless, the energy efficiency performance gap between proposed and optimal schemes is not huge.

Performance of MIMO-OFDM systems combing Pre-FFT beamformer with power control algorithm (전력제어 기법과 결합된 Pre-FFT 빔형성기를 가진 MIMO-OFDM 시스템의 성능)

  • Kim, Chan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.1
    • /
    • pp.24-31
    • /
    • 2009
  • In this paper, the new technique combing power control with Pre-FFT beamforming is proposed for MIMO(multi-input multi-output)-OFDM(orthogonal frequency division multiplexing) system. As combining the proposed power control with beamforming, we can iteratively control the transmittingpower and update the weight of beamformer together. And then, the beam is formed toward the desired direction and SNIR of each subcarrier is converged to target SNIR. Therefore, the performance of MIMO-OFDM system is very improved. BER performance improvement of the proposed approach is investigated through computer simulation by combining power allocation algorithm with MIMO-OFDM system using Pre-FFT beamformer

Limited Feedback Precoding for Correlated Massive MIMO Systems (공간 상관도를 가지는 거대배열 다중안테나 시스템에서 압축채널 제한적 피드백 알고리즘)

  • Lim, Yeon-Geun;Chae, Chan-Byoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.431-436
    • /
    • 2014
  • In this paper, we propose a compressive sensing-based channel quantization feedback mechanism that is appropriate for practical massvie multiple-input multiple-output (MIMO) systems. We assume that the base station (BS) has a compact uniform square array that has a highly correlated channel. To serve multiple users, the BS uses a zero-forcing precoder. Our proposed channel feedback algorithm can reduce the feedback overhead as well as a codebook search complexity. Numerical simulations confirm our analytical results.

Generalized User Selection Algorithm im Downlink Multiuser MIMo System (하향링크 다중 사용자 MIMO 시스템에서의 일반화된 사용자 선택 알고리즘)

  • Kang, Dae Geun;Shin, Change Ui;Kuem, Dong Hyun;Choi, Seung Won
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.99-105
    • /
    • 2012
  • Recently, there are many user selection algorithms in multi user multiple-input multiple-output (MU-MIMO) systems. One of well-known user selection methods is Semi orthogonal user selection (SUS). It is an algorithm maximizing channel capacity. However, it is applicable only when user's antenna is one. We propose a generalized user selection algorithm regardless of the number of user's antennas. In the proposed scheme, Base station (Bs) selects the first user who has the highest determinant of channel and generates a user group that correlation with first user's channel is less than allowance of correlation. Then, each determinant of channels made up of first user's channel and a user's channel in the generated group is calculated and BS selects the next user who has the highest determinant of that. BS selects following users by repeating above procedure. In this paper, we get better performance because of selecting users who have the highest determinant of channel as well as allowance of correlation optimally calculated through matrix operations.

Efficient Transmit Antenna Selection Method for Massive MIMO system (Massive MIMO 시스템을 위한 효율적인 송신 안테나 선택 기법)

  • Ju, Sang-Lim;Lee, Byung-Jin;Kim, Young-Jae;Kim, Jin-Up;Bang, Young-Jo;Kim, Kyungseok
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.58-64
    • /
    • 2016
  • This paper proposes the efficient transmit antenna selection (TAS) scheme considering trade-off between the performance and the complexity in massive MIMO system. The massive MIMO system is a core technology to achieve performance objectives for 5 generation wireless communication. It achieve high spectral efficiency, a reliability, and a diversity gain. However many RF chains required by massive transmit antennas equipped in a base station create the problem such as high hardware cost and complexity. Therefor we investigates the transmit antenna selection scheme, in which the number of RF chains of BS is reduced, and the trade-off between the performance and the complexity is considered for proposed scheme. And, the spectral efficiency and complexity are analysed by transmit antenna selection schemes.

Interference Neutralization for the K-User Interference Channel Based on MIMO Relay Cooperation (K-사용자 간섭 채널에서의 다중안테나 릴레이 협력 기반 간섭 상쇄 기술)

  • Shin, Wonjae;Lee, Jungwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1402-1405
    • /
    • 2016
  • In this paper, we develop an interference neutralization (IN) method based on a set of multi-antenna relays for K-user interference channel. The feasibility condition for IN is fully characterized. We further provide a relaxed IN method for the cases in which there are not enough relays to satisfy the feasibility condition.